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h i g h l i g h t s

� State space representations for
simulating wind power plant output
are proposed.

� The representation of wind speed in
state space allows structural analysis.

� The joint model incorporates the
temporal and spatial dependence
structure.

� The models are easily integrable into
a backward/forward sweep
algorithm.

� Results evidence the remarkable
differences between joint and
marginal models.
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← MAD of voltage: marginal state space model

← MAD of voltage: joint state space model

(*) MAD: Median absolute deviation
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a b s t r a c t

This paper proposes the use of state space models to generate scenarios for the analysis of wind power
plant (WPP) generation capabilities. The proposal is rooted on the advantages that state space models
present for dealing with stochastic processes; mainly their structural definition and the use of Kalman
filter to naturally tackle some involved operations. The specification proposed in this paper comprises
a structured representation of individual Box–Jenkins models, with indications about further improve-
ments that can be easily performed. These marginal models are combined to form a joint model in which
the dependence structure is easily handled. Indications about the procedure to calibrate and check the
model, as well as a validation of its statistical appropriateness, are provided.
Application of the proposed state space models provides insight on the need to properly specify the

structural dependence between wind speeds. In this paper the joint and marginal models are smoothly
integrated into a backward–forward sweep algorithm to determine the performance indicators (voltages
and powers) of a WPP through simulation. As a result, visibly heavy tails emerge in the generated power
probability distribution through the use of the joint model—incorporating a detailed description of the
dependence structure—in contrast with the normally distributed power yielded by the margin-based
model.
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1. Introduction

Uncertainty analysis of a wind power plant (WPP) provides
knowledge about the reliability of its design parameters, its inte-
gration into the power system, and ultimately about decisions rest-
ing on its estimated performance [1]. Essentially, these analyses
aim at producing probabilistic distributions of selected perfor-
mance indicators (voltages, powers, etc.) subject to the uncertain
variation of independent variables. Wind speed is arguably the
most significant of those variables in a WPP. Its random varia-
tions—with involved both temporal and spatial dependencies—
makes scenario generation through simulation a most valuable
tool to facilitate the uncertainty analysis.

Cross-sectional sampling is a first suite of methods for simulat-
ing wind speed to investigate WPP performance. They are the basis
of Monte Carlo analyses in which time as a variable is of no inter-
est. In these analyses the extraction of samples is not necessarily
sequential. Indeed, vector operations are indicated to improve
sampling speed [2]. In the wind power literature, several versions
appear. The simplest rest on drawing unstratified samples
of the probability distribution [3], or stratified through Latin
hypercube-sampling (LHS) [4,2] or lattice sampling [5] to improve
performance. They are simple to use because they do not necessar-
ily require parameter estimation. If the marginal distribution is
obtained through a kernel estimation, the distribution parametric
specification can be avoided [2]. Even so, they may accurately
model simple spatial dependence between pairs of machines by
using a linear transformation based on the Cholesky decomposi-
tion of the correlation matrix [3,2]. Alternatively, where the depen-
dence structure is more involved, copula methods have been
applied, but following the same time independence [6,2].

At times it is necessary not only to focus on the probabilistic
properties of the wind power sample, but also to show the longitu-
dinal dependence structure, which stands for sequential sampling.
That is the case when the wind power must be confronted to other
stochastic processes—electricity price being the most relevant [1]—
or when the evolution of a power system is investigated [7–9].
Box–Jenkins’s ARMA models—with the property of resting in past
values to regress the actual wind speed—have been favored in such
cases. Indeed, Billinton et al. claimed that any individual wind
speed process may be modeled by ARMAðn;n� 1Þ models [9].
And Torres et al. after intensive research concluded that other
more parsimonious ARMA specifications also represented these
processes adequately [10].

However, the ability to incorporate a sequential dependence
makes ARMA-based models more complex to employ than their
cross-sectional counterparts. The two major problems are the
parameter estimation of individual wind speed series and the
incorporation of spatial cross-correlation between sources. The
first issue requires trial and error procedures as well as expert
judgment, and it has been sufficiently covered in the related liter-
ature; including the classical work by Box and Jenkins [11]. The
second issue, the correlation, has been addressed in the wind
power literature in two ways: one resting on forcing the correla-
tion to estimated individual models, and other using compound
models covering several wind speed sources simultaneously. An
instance of the first approach is reported in [12], where Gao et al.
proposed a modification of the random number generation to
affect the MA errors in such a way that the correlation was forced.
The model was complex because it required a heuristic search of
the appropriate seeds. Also following the individual path, Morales
et al. proposed in [13] a methodology based on Nataf’s method,
popularized in [14], to obtain correlated samples of wind speed
after having estimated the individual models. The correlation
was incorporated by employing a technique of transformation
similar to that in [3,4]. Alternatively other authors have recently

followed the compound model path by employing vector autore-
gressive (VAR) models. For instance, in [15] VARðpÞ models were
employed for simulating wind speeds subject to directional com-
ponents. Correia et al. restricted their analysis to VAR(1) models
[16], and Hill et al. to VAR(2) [17]. The common feature in these
studies is that the authors employed VAR, but not VARMA, models.
That is, the error regression was not considered, though it has been
stated in [9,10] that it is a fundamental component.

A recent addition to the previous specifications of wind speed
autoregressive models is that of Chen and Yu in [18]. They pro-
posed the translation of an AR model into state space (SS) form.
Indeed, AR models are but a subfamily of the more general SS mod-
els. The ensuing advantages of using Chen and Yu’s approach,
rather than Box–Jenkins’s, were detailed by Durbin and Koopman
in [19, Section 3.2.1]. First and foremost, the problem can be struc-
turally analyzed. This is in contrast with Box–Jenkins approach,
which does not investigate the structure of the problem. This struc-
tural analysis makes the SS approach really flexible for incorporat-
ing trends and seasonalities. By contrast, Box–Jenkins approach
requires a previous deseasonalizing and detrending. In addition,
Durbin and Koopman cite other superior features of SS models
compared with ARMA specifications, such as for instance the treat-
ment of missing observations, the easy incorporation of explana-
tory variables, the possibility of time-varying regression
coefficients, and the use of Kalman filter to naturally forecast for-
ward in the future (the subject of [18]).

This paper contributes to the literature on wind power
scenario generation by proposing a SS representation of the wind
speed. The contributions with respect to previous works are the
following:

1. First, Section 2.2 generalizes the SS model in [18] to also con-
sider the contribution of previous unobserved errors. The ensu-
ing generalized model exhibits a structure that makes it
susceptible to easy expansions.

2. The use of Kalman filtering to estimate those marginal SS model
parameters is favored by the transformation of the original
dataset into Gaussian random variables. This paper shows that
the method proposed in [20] though proving to be useful is
incomplete, for it cannot cope with calm wind speeds. A solu-
tion to this problem is offered in Section 2.1.

3. This paper shows in Section 2.3 that a joint SS model can be
easily built, preserving the structure of the marginal models.
The joint model expands the VAR formulations in [15–17], by
incorporating the MA terms, as advised in [9,10]. Further, it
completes the marginal state space model in [18] by integrating
the spatial dependence between sources through the use of a
multivariate white noise into the transition equation, with
covariances estimated from the original data.

4. Finally, this paper shows how to integrate the model into a
backward–forward sweep algorithm to obtain the simulated
performance of a WPP (Section 3.2). Moreover, clear evidence
about the error of employing non-dependent wind speeds to
simulate the aggregated power generation of a WPP is pro-
vided: Though there may be no deviations on the mean node
voltages and generated power, the extreme and more probable
values are visibly different.

2. State space model characterization

This section describes the proposed procedure for building the
SS model of wind speed of a WPP. The model is built in a normal-
ized space, starting with an uncorrelated SS model in which the
marginal distributions are independent, and ending with the spec-
ification of the correlation.
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