Applied Energy 162 (2016) 742-762

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling

Chungen Yin^{a,*}, Jinyue Yan^{b,c}

^a Department of Energy Technology, Aalborg University, 9220 Aalborg East, Denmark

^b School of Chemical Science and Engineering, Royal Institute of Technology, Sweden

^c School of Sustainable Development of Society and Technology, Mälardalen University, Sweden

HIGHLIGHTS

• The fundamentals underpinning oxy-fuel combustion development thoroughly reviewed.

• Oxy-fuel induced changes in combustion physics, chemistry and modeling explained.

• Generic modeling strategies for PF oxy-fuel combustion successfully proposed.

• Oxy-fuel based power generation and CCS systems and the key issues discussed.

• Research needs in oxy-fuel combustion fundamentals and their modeling identified.

ARTICLE INFO

Article history: Received 13 July 2015 Received in revised form 10 October 2015 Accepted 22 October 2015

Keywords: Oxy-fuel combustion Combustion chemistry CFD Radiation System performance Carbon capture and storage

ABSTRACT

Oxy-fuel combustion of pulverized fuels (PF), as a promising technology for CO₂ capture from power plants, has gained a lot of concerns and also advanced considerable research, development and demonstration in the past years worldwide. The use of CO_2 or the mixture of CO_2 and H_2O vapor as the diluent in oxy-fuel combustion, instead of N₂ in conventional air-fuel combustion, induces significant changes to the combustion fundamentals, because of the great differences in the physical properties and chemical effects of the different diluents. Therefore, some fundamental issues and technological challenges need to be properly addressed to develop oxy-fuel combustion into an enabled technology. Computational Fluid Dynamics (CFD) modeling, which has been proven to be a very useful and cost-effective tool in research and development of conventional air-fuel combustion, is expected to play a similarly vital role in future development of oxy-fuel combustion technology. The paper presents a state-of-the-art review and an in-depth discussion of PF oxy-fuel combustion fundamentals and their modeling, which underpin the development of this promising technology. The focus is placed on the key issues in combustion physics (e.g., turbulent gas-solid flow, heat and mass transfer) and combustion chemistry (e.g., pyrolysis, gas phase combustion and char reactions), mainly on how they are affected in oxy-fuel conditions and how they are modeled and implemented into CFD simulations. The system performance of PF oxy-fuel combustion is also reviewed. Finally, the current status of PF oxy-fuel combustion fundamentals and modeling is concluded and the research needs in these regards are suggested.

© 2015 Elsevier Ltd. All rights reserved.

Contents

1.	Introd	duction .		744		
2.	Combustion physics in PF oxy-fuel firing					
	2.1.	Turbul	ent gas-particle multiphase flow	745		
		2.1.1.	Pneumatic transport of PF particles to furnace	745		
		2.1.2.	Turbulent gas flow in furnace	745		
		2.1.3.	PF particles motion in furnace	746		

http://dx.doi.org/10.1016/j.apenergy.2015.10.149 0306-2619/© 2015 Elsevier Ltd. All rights reserved.

Review

AppliedEnergy

^{*} Corresponding author. Tel.: +45 30622577; fax: +45 98151411. *E-mail address:* chy@et.aau.dk (C. Yin).

Nomenclature

Α	frequency factor in rate coefficient in Arrhenius form (s^{-1})	U _{VM,C}	fraction of unburnt combustibles, $U_{VM,C} = \frac{\text{mass of volatiles and char in particle}}{\text{mass of volatiles of host in for each particle}} (-)$
ABET	particle BET surface area (m ² /kg)	V	narticle velocity (m/s)
A_n	particle projected area (m ²)	V	cell volume (m^3)
A_{ni}	projected area of group <i>i</i> particles (m ²)	V	particle volume (m^3)
$A_{ns}^{P,}$	particle surface area (m ²)	v p X	mole fraction (_)
beii	emissivity gas temperature polynomial coefficients in	л V	mole fraction of NO ()
0,1,1	WSGGM (-)	л _{NO} V	more fraction of nitrogen in char ()
Cc	concentration of PF particles (kg/m^3)	I N,char	mass machon of minogen in chai (-)
C _D	drag coefficient (–)		
C_{n}	specific heat (I/(kg K))	Greek let	ters 1
d_n	particle size (m)	α	local gas absorption coefficient (m ⁻¹)
dm _p	conversion rate of particle in different sub-processes	$\alpha_1, \ \alpha_2$	two yield factors (–)
at	(kg/s)	α_p	equivalent particle absorption coefficient (m ⁻¹)
D	pipe diameter (m)	ΔH	heat effects (J/kg)
D_{σ}	mass diffusivity (m^2/s)	3	total emissivity of local gas mixture (–)
E	activation energy in rate coefficient in Arrhenius form	Ер	particle emissivity (–)
2	(I/kmol)	$\varepsilon_{p,i}$	emissivity of group <i>i</i> particles (–)
f.,;	scattering factor of group <i>i</i> particles $(-)$	η	conversion factor (–)
f_{mo}	initial moisture fraction (–)	θ_R	radiation temperature (K)
J W,U g g	gravitational acceleration (m/s^2)	μ_{g}	air or gas dynamic viscosity (kg/(m s))
в, в hм	convective mass transfer coefficients (m/s)	μ_t	turbulent viscosity (kg/(m s))
h_{τ}	convective heat transfer coefficients (M/s)	$ ho_{ extsf{g}}$	air or gas density (kg/m³)
$I(\vec{r} \ \hat{s})$	radiative intensity at position \vec{r} in direction \hat{s} (W/	$ ho_p$	particle density (kg/m ³)
1(1,0)	$(m^2 sr))$	σ	Stefan–Boltzmann constant (5.67×10^{-6}) (W/(m ² K ⁴))
k	kinetic rate (s^{-1})	σ_p	equivalent particle scattering coefficient (m ⁻¹)
k _a	gas thermal conductivity (W/(mK))	τ_v	particle momentum response time, $\tau_v = \rho_p d_p^2 / (18 \mu_g)$
k;	absorption coefficient of <i>i</i> -th grav gas in WSGGM (1/		(m)
	(atm m))	ϕ	phase function (–)
L	domain-based beam length (m)	Ω, Ω'	solid angle (sr)
Lc	characteristic length (m)		
m_a	particle ash content (kg)	Abbreviat	tions
m_p	particle mass (kg)	CCS	carbon capture and storage
$m_{p,0}$	initial particle mass at injection (kg)	CFD	Computational Fluid Dynamics
$m_{\nu}(t)$	mass of volatile yield up to time t (kg)	CPD	Chemical Percolation Devolatilization
MW _N	molecular weight of N (kg/kmol)	CTF	combustion test facility
MW _{NO}	molecular weight of NO (kg/kmol)	DO	discrete ordinates (radiation model)
n _i	number density of group <i>i</i> particles $(1/m^3)$	DTF	drop tube furnace
Nu	Nusselt number (–)	DTR	drop tube reactor
Р	sum of partial pressures of the participating gases (atm)	DTRM	discrete transfer radiation model
Patm	local gas pressure (atm)	EBU	eddy-breakup
$P_{\rm pa}$	local gas pressure (Pa)	ED	Eddy Dissipation
Pr	Prandtl number (–)	EDC	Eddy Dissipation Concept
q_r	radiative flux (W/m ²)	EFR	entrained flow reactor
R	conversion rate (s ⁻¹)	EWBM	exponential wide band model
Re	Reynolds number (–)	FG-DVC	Functional Group – Depolymerisation Vaporisation
Rep	particle Reynolds number, $Re_p = \rho_\sigma \mathbf{u} - \mathbf{v} d_p / \mu_\sigma$ (-)		Cross-linking
R_u	universal gas constant (8315) (J/(kmol K))	FR/ED	Finite Rate/Eddy Dissipation
S	path length (m)	FSK	full spectrum k-distribution
Sc	char burnout rate (kg/s)	JL 4-step	Jones and Lindstedt 4-step
Sc	Schmidt number (–)	LES	large eddy simulation
Sh	Sherwood number (–)	PF	pulverized fuel
S _{NO}	NO source term (kg/(m ³ s))	KANS	Reynolds-Averaged Navier-Stokes
t	time (s)	KFG	recycled flue gas
Т	temperature (K)	KIL	radiative transfer equation
T_g	local gas temperature (K)	IGA	thermogravimetric analysis
$T_{p,i}$	temperature of group i particles (K)	UDF	user-defined function
u	rac volocity(m/s)	VIVI	volatile matters
	gas velocity (III/S)		an Westhread and Driver 2 star
u_{\min}	the minimum (or saltation) velocity (m/s)	WD 2-ste	ep Westbrook and Dryer 2-step

Download English Version:

https://daneshyari.com/en/article/6684814

Download Persian Version:

https://daneshyari.com/article/6684814

Daneshyari.com