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h i g h l i g h t s

� The creative Fuzzy System is used to obtain the feature of WRFs’ outputs.
� This system can reduce the NWP uncertainties and improve the forecasting accuracy.
� The evolutionary algorithm, CS, can correct WRF’s forecasting values.
� This novelty model outperforms other approaches in different wind farms.
� The method is used for operational wind forecast within acceptable computations.

a r t i c l e i n f o

Article history:
Received 9 March 2015
Received in revised form 20 October 2015
Accepted 22 October 2015
Available online 11 November 2015

Keywords:
Wind speed
Operational wind forecast
NWP ensemble
Fuzzy system
Evolutionary algorithm
WRF correction

a b s t r a c t

Accurate wind speed forecasting, which strongly influences the safe usage of wind resources, is still a crit-
ical issue and a huge challenge. At present, the single-valued deterministic NWP forecast is primarily
adopted by wind farms; however, recent techniques cannot meet the actual needs of grid dispatch in
many cases. This paper contributes to a new multi-step forecasting method for operational wind forecast,
96-steps of the next day, termed the CS-FS-WRF-E model, which is based on a Weather Research and
Forecasting (WRF) ensemble forecast, a novel Fuzzy System, and a Cuckoo Search (CS) algorithm. First,
the WRF ensemble, which considers three horizontal resolutions and four initial fields, using a 0.5� hor-
izontal grid-spacing Global Forecast System (GFS) model output, is constructed as the basic forecasting
results. Then, a novel fuzzy system, which can extract the features of these ensembles, is built under
the concept of membership degrees. With the help of CS optimization, the final model is constructed
using this evolutionary algorithm to adjust and correct the results obtained based on physical laws, yield-
ing the best forecasting performance and outperforming individual ensemble members and all of the
other models for comparison.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As the most active renewable energy resource, wind power
exhibits strong benefits and positive prospects [1,2], but unlike
other energy sources, its power output is difficult to accurately
forecast [3] and always results in a gird imbalance between supply
and demand; the error prediction costs can be as much as 10% of a
wind farm’s annual total income from selling energy [4].

The modern wind farms are required to report the forecasted
power output one day in advance, the accuracy of which greatly
depends on the performance of wind speed forecast. Due to the
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complex fluctuations of wind speed, it is quite difficult to generate
an accurate forecast, and two categories of methods were generally
reported—statistical and physical approaches. Statistical methods
make forecasts by modeling the inner relationship among the his-
torical observations, such as Kalman filtering [5,6], auto-regressive
[7,8], neural networks [9–11] and hybrid statistical models
[6,8,12]. Pure statistical forecasts could show excellent perfor-
mance under specific local conditions but are usually unavailable
beyond about 6 h [13]. In the operational wind forecasts up to
48–72 h ahead, numerical weather prediction (NWP) models out-
perform pure statistical forecasts [14,15] and are widely used, by
providing more skilled forecasts over longer periods to supply
the operational demand of both wind farms and the power grid.
NWP models consist of discretized conservation equations of mass,
momentum, energy and other fundamental principles of physics
[16]. Recent research claimed that an accurate operational wind
prediction method must include the NWP-based process [17],
and it was sometimes the first step as an auxiliary input for other
statistical models like Kalman filtering [15,18], neural networks
[13,19,20], etc., in the literature.

1.1. Uncertainties of NWP forecasts

Current wind farms widely adopt the deterministic forecasts
from single-valued NWP models, mainly due to their great advan-
tages; however, at the same time, wind farm operations also
involve financial risks that are exacerbated by uncertainties in
two aspects: model initialization and/or model imperfections [21].

Considering model initialization, which is an approximation of
the true atmospheric state primarily a result of objective factors
[21], is essential for NWP simulation. In particular, observational
errors are unavoidable; they are limited by technical skills, precision
of observation instruments, impacts from the objective environ-
ment and more. Furthermore, the coverage of general observation
stations is incomplete, especially in remote and ocean areas. This
causes the distributions of various observational data to always be
inconsistent with the NWP model configuration in both space and
time. Although the target observation [22] and data assimilation
[23] techniques are developed to reduce the initial errors, uncer-
tainties created by all of these factors cannot be eliminated.

Uncertainties may also be produced by NWP models them-
selves, for several reasons [21]; importantly is the error caused
by inaccurate representations of physical and dynamical processes.
Although the high-resolution NWP models cannot precisely reflect
atmospheric movements, the scales are smaller than the model
grid, known as the sub-grid-scale process. Consequently, the sub-
grid-scale turbulence and microphysical processes of real atmo-
spheric motions are difficult to describe in a NWP model. This
causes model uncertainties stemming from simplifications and
parameterizations in the numerical model’s physical representa-
tion of the system it simulates [24,25]. Apart from this, another
non-ignorable reason is the computational error during the numer-
ical simulation process, including, primarily, discretization, trunca-
tion and round-off errors.

1.2. Reducing the uncertainties of NWP forecasts: ensemble methods

Recently, the model resolution and calculation efficiency of
NWP simulations have continuously improved, primarily as a
result of the contributions of the more advanced atmospheric
observation skills, the additional improvements in the parameter
optimization of the physical process, and the application of a
high-speed, large-capacity supercomputer with the relevant paral-
lel techniques. However, even with the current development of the
NWP model it is still difficult to meet the operational demand of
both wind farms and the grid system [26].

Because atmosphericmovements are instable, exhibiting chaotic
characteristics, the deterministic prediction from a single-valued
NWP simulation contains unavoidable errors. The most important
for reducing the uncertainties of NWP simulations is the ensemble
method, which conducts ensemble simulations by setting different
initial conditions then running the deterministic NWP model [27].
The ensemble members differ from each other in the initial condi-
tions and/or the numerical representation being used, generally
consisting of three aspects: (i) different initializations, (ii) different
model configurations, and (iii) multiple models [28,29]. As a conse-
quence, a set of NWP-forecasted results can be obtained that
describes the probable states of the future atmosphere.

Generally, the uncertainty problems can be divided into two
categories: randomness, and fuzziness. The core of the randomness
system is that the probable events are deterministic, but the occur-
rence of events is uncertain. It concerns the probability distribution
of probable states in the future, and some studies researched on it
[30–33]. This is important for weather prediction, especially for
extreme weather prediction. However, few articles have covered
the ensemble-based operational forecast for wind farms, in which
forecasts up to 48–72 h are needed. Considering this problem, con-
tribution of each ensemble member to the final forecast result is
non-specific and is difficult to define using deterministic criteria,
which shows the characteristics of fuzziness.

Table 1
Model configuration of WRF simulation.

Physical options

Cumulus parameterization Grell 3d ensemble cumulus scheme
Short-wave radiation RRTM scheme
Long-wave radiation Dudhia scheme
Surface layer physics Eta similarity
Land surface processes Noah Land Surface Model
Planetary Boundary layer Mellor–Yamada–Janjic scheme

Table 2
Twelve members of WRF simulation constructed in this paper.

No. Grid space Initial field time Initial boundary conditions Grid points Mark in this paper

MEM-1 27 km 0000 UTC 0.5� GFS 300 � 200 27km00
MEM-2 27 km 0600 UTC 0.5� GFS 300 � 200 27km06
MEM-3 27 km 1200 UTC 0.5� GFS 300 � 200 27km12
MEM-4 27 km 1800 UTC 0.5� GFS 300 � 200 27km18
MEM-5 3 km 0000 UTC 0.5� GFS 150 � 120 3km00
MEM-6 3 km 0600 UTC 0.5� GFS 150 � 120 3km06
MEM-7 3 km 1200 UTC 0.5� GFS 150 � 120 3km12
MEM-8 3 km 1800 UTC 0.5� GFS 150 � 120 3km18
MEM-9 9 km 0000 UTC 0.5� GFS 180 � 150 9km00
MEM-10 9 km 0600 UTC 0.5� GFS 180 � 150 9km06
MEM-11 9 km 1200 UTC 0.5� GFS 180 � 150 9km12
MEM-12 9 km 1800 UTC 0.5� GFS 180 � 150 9km18
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