Applied Energy 162 (2016) 924-939

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Alexandra Bratanova^{a,*}, Jacqueline Robinson^a, Liam Wagner^b

^a School of Economics, University of Queensland, St Lucia, Queensland 4067, Australia
^b Economics, Griffith Business School, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia

HIGHLIGHTS

• Power generation cost is modelled for a Russian region under two gas price scenarios.

- Conventional, new and renewable technologies are compared based on levelised cost.
- Regional energy system is shown to be crucially dependent on natural gas prices.
- We conclude that new gas-fired technology adoption is feasible and cost-competitive.
- Biomass demonstrates cost competitiveness, whereas solar appears infeasible.

ARTICLE INFO

Article history: Received 23 July 2015 Received in revised form 29 September 2015 Accepted 16 October 2015

Keywords: Electricity Generation cost Russian region Renewable New technology

ABSTRACT

Russia is frequently referred to as a country with substantial energy efficiency and renewable energy potential. In 2000–2008 energy-gross domestic product (GDP) ratios were improved by 35%, however, the contribution of technological progress accounts for only 1% of the energy-GDP ratio reduction. At the same time, although new policy mechanisms to stimulate renewable energy development have been recently introduced, renewable technology deployment has not yet taken off. Economic theory suggests that there is no better incentive for industry development than cost signals. This paper adapts the levelised cost of energy methodology to examine the cost structures associated with electricity generation by conventional and new technology types for a Russian region (Moscow). The model, run for two fuel price scenarios, allowed us to conclude that the regional energy supply system is heavily dependent on the natural gas price and that the diversification provided by technology development will be beneficial for the energy security of the region. We conclude that new and renewable technologies become cost-effective for electricity generation as domestic natural gas prices reach parity with export prices. However, strong political and financial support is needed to boost technological development and renewables application in Russia.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Russia is a country with substantial energy efficiency (EE) potential, estimated as 45% of primary energy use, as well as carbon emissions reduction potential, estimated as 793 million tons of CO_2 or approximately 2.9% of global energy-related CO_2 emissions [1]. Although Russia has shown an improvement in decreasing energy intensity over the last decade – energy-GDP ratios were improved by 35% between 2000 and 2008 [2,3], this was mainly due to structural changes in the economy and growth in the service sectors rather than industry. The contribution of technological progress is estimated to account for only 1% of the energy-GDP ratio improvement in Russia [4]. The current value of energy-GDP ratio is still 2.5–3 times higher than in developed countries [2,3,5,6].

Electricity generation in Russia is mostly provided by thermal (including cogeneration) plants which account for 69% of electricity. Large hydroelectric plants contribute approximately 21% of total electricity generated and nuclear plants provide up to 10% of power [7]. However, the existing share of renewable energy source (RES) electricity generation in Russia (excluding large hydroelectric plants) is estimated at between 0.1% [8] and 0.5%

AppliedEnergy

^{*} Some elements of an earlier version of this paper were presented at the 31st USAEE/IAEE North American Conference (Austin, Texas, USA) November, 2012 (Bratanova A, Robinson J, Wagner L. Energy Cost Modelling of New Technology Adoption for Russian Regional Power and Heat Generation. In: 31st USAEE/IAEE North American Conference, Austin, Texas, USA; 2012).

^{*} Corresponding author. Tel.: +61 421 138 919.

E-mail address: a.bratanova@uq.edu.au (A. Bratanova).

Nomenclature

CO ₂	carbon dioxide	Ν	operating lifetime
Aux _i	auxilary energy use	R	revenue flow
В	equity beta	Т	time period
$Capex(t)_i$	capital costs		I
CF_i	capacity factor	Abbrevia	tions
$CM(t)_j$	technology depletion costs	CAPM	Capital Asset Pricing Model
D/V	debt capital share	CCGT	combined cycle gas turbine
E/V	equity capital share	CCS	carbon capture and storage
$FC(t)_i$	fuel price	CF	capacity factor
$FOM(t)_i$	fixed operating and maintenance costs	CPI	consumer price index
$FOM(t)_i$	fixed operating and maintenance costs	EE	energy efficiency
$Fuel(t)_i$	fuel cost	FOM	fixed O&M costs
HR _i	heat rate	FSSS	Federal State Statistics Service
$I(t)_{C}$	growth parameters separately for cost flow	GDP	gross domestic product
$I(t)_R$	growth parameters separately for revenue flow	GJ	gigajoule
LCOE _i	levelised cost of power generation	GRES	condenser type electricity thermal power station (from
m^3	square meter	GILD	Russian: «ГРЭС»)
R_c	country risk	IEA	International Energy Association
R_d	cost of debt	kW	Kilowatt
R _e	cost of equity	LCOE	levelised cost of energy generation
R_{f}	risk free rate of return	MW	Megawatt
$\vec{R_m}$	market rate of return	MW h	megawatt-hour
size _i	plant size (installed capacity)	O&M	operating and maintenance
$SO(t)_j$	sent out power	OECD	Organisation for Economic Co-operation and Develop-
$SOR(t)_j$	revenue flow from energy production	OLCD	ment
Т	tax rate	OGK	power generating company on the wholesale energy
$TOC(t)_j$	total operating costs		market (from Russian: «OFK»)
VOC_j	variable operating and maintenance costs per MW	ра	per annum
$VOM(t)_j$	variable operating and maintenance costs	PCC	pulverized coal combustion
WACC	weighted average cost of capital	PV	photovoltaic
WACCPost	-TaxNominal post tax nominal WACC	RES	renewable energy source
WACCPost	-TaxReal post tax real WACC	RUR	Russian roubles
		SC	supercritical
Subscript	S	USC	ultra supercritical
С	cost flow	USD	US dollars
Ĵ	technology type	VOM	variable O&M costs
5	05 51		

[9]. However, RES resources in Russia are large and diverse, with a recognized volume of approximately 30% of Russia's primary energy supply [9,10].

Understanding the identified EE potential, improvement in EE was made a national goal initially targeting a 40% reduction in energy intensity by 2020 [2,3] and later reduced to 13% [11]. Improvement in energy generating technology and adoption of RES technology were identified as the key to achieve the goal. Current regulation sets national targets in RES development as shares: for 2015 – 2.5%; and for 2020 – 4.5%, excluding large hydroelectricity producers [12].

Future economic development of the country is reliant on the realisation of the EE potential that the national economy is "pregnant with" [4–6]. A boost of RES deployment in the country is crucial [9,13]. The conundrum for industry and policy makers is how to stimulate technological development and RES deployment in the Russian energy sector [5,6].

In addressing this problem, this paper relies on economic theory suggesting that an effective incentive for industry development is a reduction in costs. We apply a cost of energy modelling tool – levelised cost of energy generation (LCOE) which allows a comparison of new energy generating technology cost with conventional electricity generation. This paper therefore addresses issues of technology deployment feasibility for Russia to determine the cost competitiveness of new and renewable electricity generation.

Specifically, the Moscow case study provides an insight into electricity generation costs for region specific economic and industrial conditions.

Moscow, the most populated region in Russia, with a large metropolitan area and substantial energy consumption is the case study. It accounts for 0.015% of land area and 8.3% of the population of Russia [14]. Moscow Region energy consumption accounts for 11.7% of Russian total energy consumption [15,16]. As compared to power generation in Russia, on average 97% of electricity in the Moscow and Moscow Region is supplied by thermal power stations of different types [15,16]. Moscow as a case study is particularly interesting as it raises issues about the energy supply system which could be encountered by megacities in other countries.

However, the issues raised in this paper go beyond the Russian regional and national level. This paper presents a step forward in the analysis of electricity generation options for countries and locations where feasibility of renewable generation is yet to be realised. Furthermore, we provide an analysis of technological development and RES deployment for countries whose cost of capital is high, a situation applicable to the many former Soviet Union countries.

This study demonstrates the application of a reliable and robust methodology to uniquely constructed datasets for the Russian energy system. It results in cost estimates, technology ranking and screening curves which form a basis for international Download English Version:

https://daneshyari.com/en/article/6684856

Download Persian Version:

https://daneshyari.com/article/6684856

Daneshyari.com