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a b s t r a c t

We investigated how local thermal non-equilibrium and vertical throughflow affect the stability of an
internally heated fluid-saturated porous layer. In order to investigate the effects of heterogeneity, we
considered a system composed of two horizontal porous layers with different properties. This allowed
us to investigate the effects of vertical variation of various parameters. Due to a large number of
parameters, our primary goal was to investigate which parameters have a significant effect on the
stability of the system. We have found that heterogeneity of permeability and fluid thermal conduc-
tivity have a major effect, heterogeneity of interphase heat transfer coefficient and porosity have a
lesser effect, while heterogeneity of solid thermal conductivity is relatively unimportant. At the same
time we investigated the variation of both upward and downward throughflow, and variation of heat
source strength between the layers and between the fluid and solid phases. Downward throughflow is
destabilizing, while upward throughflow is stabilizing. The stability is strongly affected by the solid-to-
fluid heat source strength ratio.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the standard formulation of the onset of convection in a
horizontal layer of a porous medium with symmetrical (top/
bottom) perturbation boundary conditions (for example, both
boundaries conducting and impermeable) the solution for the
convective flow is symmetrical about the horizontal mid-plane of
the layer. This symmetry can be removed in various ways, such as
by vertical heterogeneity or by vertical throughflow, or if the
layer is internally heated, and separately each of these situations
has been comprehensively studied (see, for example, the surveys
in Sections 6.13, 6.10.2 and 6.5 of Nield and Bejan [1]). In the case
of vertical throughflow the asymmetry is a result of the basic
vertical temperature gradient being augmented in the region
close to the boundary towards which the throughflow is directed,
with a corresponding reduction in that gradient in the rest of the
layer. In the case of internal heating a negative basic temperature
gradient is present only in the upper portion of the system and so
the convection, when it occurs, is concentrated in that portion.

That means that relatively greater permeability or relatively
smaller fluid thermal conductivity in the upper region each
reduce the stability. Local thermal non-equilibrium (LTNE) pro-
vides a further complication. Our present interest lies in the ef-
fects of the combination of heterogeneity, throughflow and LTNE.
The effect of throughflow with LTNE has been investigated by
Patil and Rees [2], but only in the case where the throughflow is
large enough to produce a thermal boundary layer at the
boundary towards which the flow is directed. The combined ef-
fects of heterogeneity (in the special form of two layers each of
which is homogeneous) and vertical throughflow have been
studied by Nield and Kuznetsov [3]. However, it appears that, to
the best of our knowledge, the combination of LTNE and vertical
throughflow had not been investigated in any previous study.
This situation is of interest because the throughflow occurs in the
fluid phase only, and this has ramifications both for the basic
solution and the instability problem. We also mention that Nield
and Kuznetsov [4] studied the effects of LTNE in a layered porous
medium for the case of bottom heating, while the case of LTE for
internal heating in a layered porous medium was treated by
Nield and Kuznetsov [5].

For the case of a layered medium with internal heating, studies
have been made by Kuznetsov and Nield [6e8]. In Ref. [7]
throughflow was considered. In Ref. [8] LTNE was treated.
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Since the effect of throughflow is the primary concern in this
paper, we document the literature on that topic. Research up to mid-
2012 is surveyed in Section 6.10.2 of Nield and Bejan [1]. The early
studies were by Sutton [9], Homsy and Sherwood [10] and Nield [11].
In the case of large P�eclet number the effect of throughflow is to
confine significant thermal gradients to a thermal boundary layer at
that boundary toward which the throughflow is directed. The
effective vertical length scale is thus reduced, and since the effective
Rayleigh number is proportional to this length scale, it immediately
follows that larger values of the Rayleigh number are needed before
convection begins. For smaller P�eclet numbers the effect depends on
whether the thermal boundary conditions are symmetrical or not.
Interesting recent papers include those by Patil and Rees [2], and by
Capone, De Luca and colleagues [12e15].

For completeness, in the present paper we provide a grand
coalescence with all four effects: those of LTNE, layered medium,
throughflow, and internal heating.

2. Analysis

Asterisks are used to denote dimensional variables. The z*-axis
is taken in the upward vertical direction, and the porous medium is
unbounded in the x* and y* directions. Subscripts 1 and 2 are used
to denote the two layers, of depths dH and (1 � d)H, where d is less
than unity.

The first layer occupies the region 0 �z* <dH and the second
layer occupies the region dH <z* �H. We suppose that the up-
ward uniform vertical throughflow Darcy velocity is V, a specified
quantity. Continuity of mass requires that this is the same in each
region. Thus V is a constant. The fluid and solid phases are
denoted by subscripts f and s. A uniform temperature T0 is
imposed at each of the lower and upper boundaries in
each phase. Fluid and solid volumetric heat sources of strengths
Qf1, Qs1 and Qf2, Qs2 occupy the lower and upper layers,
respectively.

Nomenclature

a dimensionless horizontal wavenumber
D d/dz
ez unit vector in the z-direction
h interface heat transfer coefficient (incorporating the

specific surface area) between the fluid and solid
particlesbh parameter defined in Eq. (15)

hr interface heat transfer coefficient ratio, h2/h1
g gravitational acceleration
g gravitational acceleration vector
H dimensional layer depth
k thermal conductivity of the porous mediumbkf parameter defined in Eq. (15)
kfr fluid thermal conductivity ratio, kf2/kf1bks parameter defined in Eq. (15)
ksr solid thermal conductivity ratio, ks2/ks1
K permeability of the porous mediumbK parameter defined in Eq. (15)
Kr permeability ratio, K2/K1

N interface heat transfer parameter, h1H2=ðf1kf1Þ
P dimensionless pressure, ððrcÞf K1=ðmkf1ÞÞP*
P* pressure, excess over hydrostatic
Pe P�eclet number, ðrcÞf HV=kf1
Qf volumetric heat source strength in the fluid phasebQ f parameter defined in Eq. (15)
Qfr volumetric heat source strength ratio in the fluid

phase, Qf2/Qf1

Qs volumetric heat source strength in the solid phasebQ s parameter defined in Eq. (15)
Qsr volumetric heat source strength ratio in the solid

phase, Qs2/Qs1

Ra internal Rayleigh number, ðrcÞf r0gbK1H3Qf1=ð2mk2f1Þ
t dimensionless time,ðkf1=ððrcÞf H2ÞÞt*
t* time
T dimensionless temperature,

ððrcÞf r0gbK1H=ðmkf1ÞÞðT* � T0Þ
T* temperature
T0 temperature at the lower and upper boundaries
(u,v,w) dimensionless velocity components,

ððrcÞf H=kf1Þðu*; v*;w*Þ

u* Darcy velocity, (u*,v*,w*)
V vertical throughflow velocity
(x,y,z) dimensionless Cartesian coordinates, ðx*; y*; z*Þ=H
(x*,y*,z*) Cartesian coordinates; z* is the vertically-upward

coordinate

Greek symbols
a modified thermal diffusivity ratio,

ððrcÞs1=ðrcÞf1Þðkf1=ks1Þ
b volumetric expansion coefficient of the fluid
g modified thermal conductivity ratio,f1kf1=ðð1� f1Þks1Þ
d dimensionless layer depth ratio (interface position)bd parameter defined in Eq. (15)
dr inverse solid fraction ratio,ð1� f1Þ=ð1� f2Þ
ε dimensionless small quantitybε parameter defined in Eq. (15)
εr solid heat capacity ratio, ðrcÞs2=ðrcÞs1
m fluid viscosity
r0 fluid density at temperature T0
rf fluid density
rQ Qs1/Qf1

(rc)f heat capacity of the fluid
(rc)m effective heat capacity of the porous medium
(rc)s heat capacity of the solid
ɸ porositybf parameter defined in Eq. (15)
ɸr porosity ratio, ɸ2/ɸ1

Subscripts
B basic state
c critical value
f fluid phase
m effective property for the porous medium
r relative quantity
s solid phase
1 the region 0 �z* <dH
2 the region dH �z* �H

Superscripts
0 perturbation variable
* dimensional variable
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