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Transient heat conduction within periodic heterogeneous media:
A space-time homogenization approach
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a b s t r a c t

Composite materials generally exhibit a highly anisotropic thermal behavior (due to the orientation of
fibers), leading to strong difficulties to determine the thermal conductivity tensor. Two approaches can
be developed for its evaluation. The first one is to carry out experimental measurements with one or
several devices to get all the components of the tensor. The second one is to use predictive models based
on homogenization theories from the properties and the arrangement at the microscopic scale of each
component of the composite material.

Following this second approach, a space-time homogenization based on the multi-scale asymptotic
expansion method is first developed to model the transient heat conduction problem within periodic
heterogeneous structures. The introduction of additional terms to correct the edge effects (i.e. close to
the boundaries of the macroscopic domain) in the transient state is considered. We show how these
transient correcting terms can be introduced and calculated, depending on the classical boundary con-
ditions in conduction heat transfer problems. Moreover, we underline that correcting terms have also to
be added to take into account “short time” effects.

Furthermore, we propose to discuss numerical results of the heat transfer modeling in a Laser Flash
experiment. We specifically show how the effective thermal diffusivity may be biased when edge effects
are neglected in the homogenized model.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

In order to predict the thermal (and the associated thermo-
mechanical) behavior within complex heterogeneous media, a
usual approach consists in determining the effective thermal
properties and/or temperature fields through homogenized heat
transfer models. This approach is very interesting in several in-
dustrial domains such as in aeronautics or automotive. A typical
example is the design of complex parts for new airplane structure
where the use of composite materials with highly anisotropic
thermal properties (due to the orientation of fibers) becomes more
and more systematic [1]. However, the determination of the
effective thermal conductivity tensor is a tricky task. Consequently,
reliable and efficient methods, initially developed for mechanical
models [2], are thus required for its determination. From an

experimental point of view, specific devices such as classical tran-
sient laser flash (LF) [3,4], hot wire [5] methods, or a specific hot
disc method [6] can be used to estimate the effective thermal
properties. Another possibility is to make calculations from a
representative volume element [7] of the anisotropic actual me-
dium, knowing the thermal conductivity of each phase.

The heat transfer modeling according to a multi-scale analysis
[8e10] is complementary to the experimental approach and quite
powerful. It aims on one hand to determine the effective thermal
properties from data known at the scale of the components, and on
the other hand to have a better understanding of the “edge effects”
[11e14] which may disrupt the temperature field of the homoge-
nized heat conduction model close to the boundaries of the spatial
domain. To our knowledge, this second aspect is rarely discussed in
the literature. Consequently, within the framework of the estima-
tion process of effective properties, which would result on the
comparison of experimental surface temperatures with the solu-
tions of homogenized models, more insight have to be done in the
analysis of these “edge effects”, to know when they can be
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neglected or not. More generally, it is well-known that errors
associated to modeling in the inverse analysis of experimental data
should imply biased estimation (systematical errors) of the un-
known model parameters [15].

A previous work [13], devoted to the heat conduction steady
state analysis within heterogeneous periodic structures, shows
how correcting terms can be introduced in the multi-scale
asymptotic method to take into account these “edge effects”, in
the case of a homogenized 3-D heat conduction problem. The re-
sults were obtained by following the works of Dumontet [14] in
elasticity.

In this paper, a space-time homogenization approach, based on
the multi-scale asymptotic expansion method, is developed first to
model the transient heat conduction problem within periodic
structures. Such approach was also studied in Refs. [16,17]. How-
ever, the introduction of additional terms to correct the edge effects
in transient statewas not considered.We show how these transient
correcting terms can be introduced and calculated, depending on
the classical boundary conditions in heat transfer problems.
Moreover, correcting terms have also to be added to take into ac-
count “short time” effects. Numerical results are presented in the
case of a simple multilayered media, but the method is quite gen-
eral and it could be used for periodic heterogeneous structures, like
in plain weave fabric composites [18].

The last section is devoted to the discussion of numerical results
of the heat transfer modeling in a LF experiment where numerical
data of Fudym et al. [11] are thus used for this purpose. The het-
erogeneous solution is compared to the homogenized one,
computed with and without correcting terms, and to the analytical
homogeneous solution. Specifically, the LF method is based on the
heating of the front surface of a thin sample (with parallel faces)
with a nearly instantaneous pulse of light (compared to the heat
conduction characteristic time of the medium). The influence of the
heat losses by convection is also considered. The temperature rise
on the back face is measured as a function of time (thermocouple or
IR detector), and it is used to determine the thermal diffusivity (in
the direction normal to the back face) of the sample. The bias, due
to the estimated value of the thermal diffusivity when edge effects
are neglected in the homogenized model, is evaluated.

2. Problem statement heat conduction in the heterogeneous
material

Let us consider a piece of heterogeneous periodic material, Fig.1,
defined in a bounded domain U3 R3. The macroscopic coordinates
of a point of U are denoted x ¼ (x1,x2,x3) in a Cartesian coordinate
system {0,e1,e2,e3}. The boundary vU is subdivided in four distinct
parts vU ¼ ∪4

i¼1Gi, in order to consider the different usual kinds of
boundary conditions associated to the heat conduction problem:

� A Fourier condition on G1: the normal outward component fε$n
of the heat flux is fixed by an external temperature Text and a
heat transfer coefficient h.

� A Neumann condition on G2: the normal outward component
fε$n of the heat flux is fixed.

� A Dirichlet condition on G3: the temperature is imposed.
� A periodic condition on G4.

The initial condition is defined by the field Tini(x), x 2 U, which
is isothermal or not. A spatially distributed volume heat source f(x),
x 2 U may be considered all over the spatial domain, at the
macroscopic scale.

The heterogeneous fields in the spatial domain U, are denoted
respectively Tε (temperature) and fε (heat flux density). These fields
over the time interval (0,tf) satisfy the following set of transient

heat conduction equations together with the different kinds of
boundary and initial conditions:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

rCp
vTεðx; tÞ

vt
� divx½fεðx; tÞ� ¼ f ðxÞ in U�

�
0; tf

�
fεðx; tÞ ¼ KVxTεðx; tÞ in U�

�
0; tf

�
Tεðx; t ¼ 0Þ ¼ TiniðxÞ in U

fεðx; tÞ$n ¼ hðTε � TextÞ on G1 �
�
0; tf

�
fεðx; tÞ$n ¼ F on G2 �

�
0; tf

�
Tεðx; tÞ ¼ Text on G3 �

�
0; tf

�
Periodic conditions on G4 �

�
0; tf

�

(1)

where n is the outward normal unit; r, Cp and K are respectively the
density, the heat capacity and the thermal conductivity tensor of
the heterogeneous medium which is assumed to have a periodic
structure.

The periodic cell (see Fig. 1), is denoted Y ¼ Q3
i¼1½0; li� and

y¼ (y1,y2, y3) ∊ Yare the coordinates of a cell point. The scale factor ε
is the ratio between the size of Y and the size of U, the microscopic
coordinates are thus defined from y ¼ ε

�1x.
Each component kij(y); i,j¼ 1, 2, 3 of the thermal tensor and the

parameter rCp(y) are cell-periodic and depend on the local variable
y (microscopic scale) in the cell domain Y.

3. Periodic homogenization in transient state

3.1. Multi-scale asymptotic expansion method

It is assumed that the thermal conductivity of each components
of the heterogeneous structure have the same order of magnitude,
which means that the thermal contrast is not too large. The same
assumption is done for the heat capacities. The influence of large
contrast is not considered here and should lead to more de-
velopments, as described for example in Ref. [10].

Assuming that the scale factor ε is small enough, the asymptotic
expansion method [9] may be used and the temperature Tε is
expanded, like for steady state solutions [13], under the following
form:

Tεðx; y; tÞ ¼ T0ðx; y; tÞ þ εT1ðx; y; tÞ þ ε
2T2ðx; y; tÞ

þ…; x2 U; y 2 Y (2)

where Tk is the approximation of Tε at the order k and is supposed to
be spatially periodic at the microscopic scale. The time variable
appears in the asymptotic development as a simple parameter.
Consequently, the heat flux density fε(x,t) ¼ KVxT

ε(x,t) can be
expanded such that:

fεðx; y; tÞ ¼ ε
�1f�1ðx; y; tÞ þ f0ðx; y; tÞ þ εf1ðx; y; tÞ þ… (3)

By injecting the development (2) in the transient heat conduc-
tion Equation (1), and using the property that an entire series is
equal to zero if and only if each of its term is null [8e10], it results in
a new equation for each power of ε:

� At the order k ¼ �2, it comes: divy[K(y)VyT
0(x,y,t)] ¼ 0.

Furthermore, since T0 is periodic, it implies that
K(y)VyT

0(x,y,t) ¼ 0. Hence the function T0 does not depend on
the microscopic variable: T0(x,y,t) ¼ T0(x,t). Consequently,
f�1(x,y,t) ¼ K(y)VyT

0(x,t) ¼ 0.
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