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a b s t r a c t

Propagation of uncertainty through the physical model has been investigated in the present paper by
solving two specific simple stochastic problems using the Non-Intrusive Spectral Projection method. The
uncertain parameters are described by either a Gaussian or a LogNormal probability distribution func-
tion. For each of the problems, the stochastic and the deterministic mean solutions have been compared
and the respective confidence intervals have been obtained. For the deterministic problems, the confi-
dence intervals have been estimated using both one-dimensional and multi-dimensional bound
methods. From the results it has been observed that the differences between the stochastic and the
deterministic mean solutions are apparent only when large uncertainties are introduced in the random
variables. For both the specific problems, considered in the present study, the confidence intervals for the
stochastic problems have been exactly predicted by the deterministic limits when uncertainty is intro-
duced only in one of the parameters. For more than one uncertain parameters, the multi-dimensional
bound method produces better agreement with the stochastic confidence intervals than the one-
dimensional bound method. The findings are expected to be applicable to problems in heat and mass
transfer with similar characteristics or inputeoutput relations.

� 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

In computational predictions, as well as in experiments, it is
important to quantify the accuracy of the results [1e3]. Uncertainty
quantification in numerical simulations allows one to set the confi-
dence intervals for thepredicted systembehavior,whichmaybevery
important froman engineering point of view. Owing to the increased
computing power, the computational tools nowadays can handle
various problems involving multi-physics, e.g., fluidestructure
interaction, electro-magneto-hydrodynamics, combustion with and
without the presence of porous media, phase-change and multi-
phase flows, turbulence with various time and space scales, etc. The
actual physical models involved in such simulations can have high
levels of complexity, and thereby can introduce many sources of
uncertainties. The manner, in which the uncertainties in individual
modeling interactwith each other and influence thefinal outcomeof
the simulation, is also not trivial owing to the nonlinear nature of the

predictive conservation equations. In general, parametric uncer-
tainties in numerical simulations can arise due to several factors,
such as, coefficients in the combustion rate expressions, thermo-
physical properties, initial and boundary conditions, etc. Neverthe-
less, most often these parameters are assumed as ideal inputs,
leading to well defined deterministic solutions and thereby
neglecting the effects of their inherent uncertainties, which may be
relevant in some situations. As a result, prediction of uncertainty
limit is also of utmost importance along with the mean numerical
simulation in order to have better insight in to the practical problem
and to form a reliable basis for comparison with the experimental
data. It may be mentioned here that uncertainties could also be
manifested in the simulatedoutputs due to thediscretization errorof
thenumerical scheme[3]. .This issue is, however, beyondthescopeof
the present article.

The main purpose of stochastic solutions is to determine the
mean (expected) solution of the physical problem and to obtain the
solution confidence interval for a given uncertainty in some input
parameters. There are several stochastic approaches available those
accurately model the uncertainty propagation of the input
parameters into the output variables during simulation [4]. The
well known Monte Carlo (MC) method can be easily implemented,
however, it is computationally expensive, even for a small number
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of uncertain inputs [5,6]. More effective methods are based on the
spectral representation of parametric uncertainties, using Poly-
nomial Chaos (PC) decomposition [6e8]. In these methods, the
uncertainties are treated as additional dimensions along with time
and space and uncertain variables for a given problem are projected
on these random dimensions using appropriate PC expansions. A
classical PC method is based on the Intrusive Spectral Projection
(ISP), which requires reformulation of the governing equations in
order to propagate the uncertainty through the model, resulting in
a set of equations that are generally coupled and most often require
special solvers. Although this approach is effective, however, may
not be practically suitable within the context of existing complex
nature of the modern in-house or commercial CFD codes those are
capable of handling multi-physics problems. An alternative
approach could be the Non-Intrusive Spectral Projection (NISP)
method, where the expansion coefficients of the stochastic solution
are obtained by employing sampling in the deterministic solution
space. The NISP approach can be easily applied to almost any
deterministic codes, however, as the number of uncertain inputs
increases, it requires sophisticated sampling methods to be
implemented such that it becomes competitive with the ISP
approach [8,9], in terms of CPU cost.

In practical heat transfer and fluid flow problems the analytical
solutions are generally rare owing to the various nonlinearities
introduced by the multi-physics and complexities associated with
the models, and hence, numerical solutions are often inevitable.
Moreover, availability of the analytical solution for a given problem
does not necessarily ensures the possibility of obtaining analytical
solutions to the set of equations, generated by the ISP, in order to
describe the stochastic problem. Even when numerical solutions
are required, many times they are obtained using commercial
codes, which, in general, prevent access to the original source code.
All these situations eventually require the use of non-intrusive
techniques in order to perform stochastic calculations. The imple-
mentation and the effectiveness of both intrusive and non-intrusive

techniques have been investigated and documented in several
scientific publications. Ghanem [10] applied the intrusive spectral
formulation of the stochastic finite element method to the problem
of one-dimensional heat conduction in a random medium, where
the random material properties were treated with both Gaussian
and LogNormal models. They have concluded that their intrusive
procedure provided a reliable characterization for the propagation
of uncertainty from the thermal properties values. Wan and Kar-
niadakis [11] have employed the multi-element generalized poly-
nomial chaos method in order to investigated subcritical resonant
heat transfer in a heated periodic grooved channel by modulating
the ow with an oscillation of random amplitude, which was
assumed to follow both uniform and Beta distributions. They have
concluded that their stochastic modeling approach offers the
possibility of designing more effective heat transfer enhancement
strategies. Le Maître et al. [12] compared the ISP and NISP methods
applied to simulations of natural convection in a 2D square cavity
with stochastic temperature distribution prescribed on the cold
wall. It was concluded that the NISP, using Gauss-Hermite sampling
points, performs well when compared with the ISP. It was also
shown that if Latin hypercube sampling is used in the NISP, the
accuracy of the results is strongly affected by sampling errors and
relatively large number of samples is required to achieve similar
accuracy. Recently, Ganapathysubramanian and Zabaras [9] applied
a NISP method to various stochastic natural convection problems
by using a sparse grid collocation technique for sampling the
deterministic solution space. They showed that this method
performs even better than the ISP or MC methods, specially for
large number of stochastic dimensions. The NISP method was also
applied for quantification of uncertainties in reacting flow simu-
lations [5,13], where intrusive methods are generally avoid due to
the complexity of the governing equations.

In view of the discussion made so far few comments are now in
order: i) Stochastic solutions are of utmost importance in variety of
engineering problems owing to the several uncertainties in the

Nomenclature

f̂ j multi-dimensional spectral mode number j of f
A area
Cf L average skin friction coefficient
f, g generic functions
h convective heat transfer coefficient
k thermal conductivity
L length
M uncertain parameter in ODEs
N number of uncertain parameters
NuL average Nusselt number
P number of PC expansion terms minus one/perimeter
p maximum polynomial order in PC expansion
Pr Prandtl number
ReL Reynolds number
Si number of samples for uncertain parameter i
T temperature
u velocity
W multi-dimensional Gaussian probability distribution
wi Gauss-Hermite quadrature weight at point i
X dimensionless space coordinate
x, y space coordinates

Greek symbols
a ratio of standard deviation to mean value
h fin efficiency/similarity variable

g dimensional skewness
li uncertain parameter i
ln n order one-dimensional spectral mode of l
m mean value/dynamic viscosity
n kinematic viscosity
fi multi-dimensional orthogonal polynomial number j
jn orthogonal polynomial of order n
r density
s standard deviation
s average shear stress
q modified temperature
x
!

vector of random variables
xi random variable associated with uncertain parameter i

Superscript
0 space derivative
e mean quantity
d deterministic

Subscript
N at infinite
b fin base
c cross section
i auxiliary pointer
j, k auxiliary pointers
n polynomial order
w at wall
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