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h i g h l i g h t s

� The learning rate of China’s wind energy sector over 2004–2011 is estimated.
� The options to achieve grid-parity for wind electricity are investigated.
� The evolution of learning investment is examined.
� The linkage between learning investment and climate finance is discussed.
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a b s t r a c t

China has adopted an ambitious plan for wind energy deployment. This paper uses the theory of the
learning curve to investigate financing options to support grid parity for wind electricity. First, relying
on a panel dataset consisting of information from 1207 wind projects in China’s thirty provinces over
the period of 2004–2011, this study empirically estimates the learning rate of onshore wind technology
to be around 4.4%. Given this low learning rate, achieving grid parity requires a policy of pricing carbon at
13 €/ton CO2e in order to increase the cost of coal-generated electricity. Alternatively, a learning rate of
8.9% would be necessary in the absence of a carbon price. Second, this study assesses the evolution of
additional capital subsidies in a dynamic framework of technological learning. The implicit average
CO2 abatement cost derived from this learning investment is estimated to be around 16 €/ton CO2e over
the breakeven time period. The findings suggest that climate finance could be structured in a way to pro-
vide up-front financing to support this paradigm shift in energy transition.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Reducing greenhouse gas emissions is a two-way street that
bridges finance and technology. The key issue of global climate
finance is to unlock and scale up additional and predictable capital.
Meanwhile, promoting renewable energy is a distinct part of the
global climate regime. The long-term policy objective is to make

electricity generation from renewable energy sources achieve grid
parity without subsidies. Both challenges have prompted policy
makers to question whether consistency between these climate
and technology mechanisms can be ensured to achieve long-term
environmental and energy targets.

To answer this question, the theory of the learning curve pro-
vides a useful approach. The unit cost of a product falls along with
knowledge accumulation based on learning-by-doing and research
and development (R&D) [1]. Dutton and Thomas [2] and Anzanello
and Fogliatto [3] provided a comprehensive review on learning
models and their application in various industries. Such learning
effects were found to be significant for renewable energy technolo-
gies (e.g. [4–9]. Understanding the role of technology learning has
important policy implications, given the long-term nature of
climate and energy challenges. Generally, an early and upfront
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investment support can be justified by economic benefits of faster
cost reduction [10]. The success of policy instruments needs to
consider this dynamic efficiency.

In this study, we first assess the learning rate of China’s wind
energy by considering two drivers of learning effects – cumulative
installed capacity and technology efficiency improvement. Then,
we extend the learning curve model to investigate the evolution
of additional capital subsidies needed to trigger grid parity,
depending on three technology dimensions – learning rate, cost
target, and deployment speed. Finally, we estimate the implicit
abatement cost over the breakeven time.

Our contribution is two-fold. First, this study estimates the
learning rate of onshore wind energy in China over the time period
of its impressive leapfrog in the global wind power market. To this
end, we construct a province-wide panel dataset from 2004 to
2011, based on capital costs of 1207 wind power projects. The
learning rate is found to be around 4.4%, falling in the low end of
the historical estimates of wind power learning rates. The review
of the literature leads to few uniform conclusions – the wind power
learning rates can range from 4% to 32% [11–13]. The existing stud-
ies rely on the data from industrialized countries. Even though
China had virtually no wind power capacity in 2001, the country
has led the global wind market with the highest installed capacity
since 2010 [14]. To our knowledge, the literature to date provides
only one estimate of China’s wind power learning rate, using the
bidding electricity prices of national wind project concession pro-
grams from 2003 to 2007 [15]. However, our dataset consists of
capital costs of wind projects and covers a more comprehensive
time period, thus providing a complementary analysis.

Second, this study extends the analysis of learning investment
derived in [16] and investigates a carbon pricing policy in a
dynamic framework of technological learning. Previous studies
evaluated the abatement cost of technology substitution using a
static approach that does not consider the evolution of technology
[17,18]. This study consists of computing the abatement cost over
the whole period of wind energy grid parity. The results suggest
that, given the learning rate, cost target, and deployment speed
of wind energy, climate finance can be structured to help align
up-front capital subsidy with declining cost trajectory. In the
absence of consistency between climate finance and technology
roadmap, project-based Clean Development Mechanism (CDM)
has already put into question the additionality of climate finance
due to multiple domestic policies of the wind power sector in
China [19]. In the context of global climate regime, new market
mechanisms shift towards a sectoral approach to support
Nationally Appropriate Mitigation Actions (NAMA) in developing
countries [20,21]. Most of these initiatives are still at a conceptual
level. Nevertheless, our quantitative and evidence-based analysis
shows what design features of climate finance can help maintain
coherence between global and domestic efforts.

The reminder of this article is organized as follows. Section 2
details methods and models. Section 3 presents data issues.
Section 4 presents and discusses the results. Section 5 concludes
with policy implications.

2. Method and models

2.1. Technology trajectory

We assume that wind technology follows an exponential
growth path such that:

Nt ¼ N0 � ed�t ð1Þ

Noting that d measures the growth rate of cumulative wind capac-
ity, which equals to ed�1.

The main spirit of learning models is that cost reductions
will be achieved as a result of learning-by-doing and
learning-by-searching activities. Learning-by-doing leads to
increased labor efficiency, work specialization and methods
improvement. Learning-by-searching measures the impact of
R&D based knowledge stock on technology cost through design
improvement, manufacturing optimization, economies of scale,
and new materials or production process. The existing literature
mostly uses public and private R&D expenditures to represent
the state of knowledge stock. We use the simplest and most com-
monly used specification of one-factor learning-by-doing curve in
following modeling exercise, while we empirically test the validity
of two-factor learning curve combing learning-by-doing and
learning-by-searching.2 We return to a discussion of this issue
below when reporting regression results. The one-factor learning
curve can be expressed as:

Ct ¼ CoðNt=N0Þ�a ð2Þ

where3

� Ct andCo are the capital cost level of wind technology at time t
and at a starting point (t = 0), respectively;
� a is the learning-by-doing coefficient.

Based on Eq. (2), the learning-by-doing rate (LR) is subsequently
defined as:

LR ¼ 1� 2�a ð3Þ

Precisely, LR measures the relative cost reduction in percentage
after each doubling of cumulative production.

At the breakeven time (t = b), cumulative installed capacity and
capital cost of wind technology are denoted as Nb and Cb, respec-
tively. Then, from Eq. (1), the breakeven time (T) can be expressed
as follows:

T ¼ lnðNb=N0Þ � ð1=dÞ ð4Þ

With Eq. (2), Eq. (3) is equivalent to:

T ¼ ð�d � aÞ�1 � lnðCb=C0Þ ð5Þ

Clearly, the breakeven time depends on normalized breakeven cost
(Cb/C0), learning coefficient (a) and growth rate of cumulative
capacity (d).

2.2. Learning investment

We model a subsidy system based on investment subsidies. For
defining an optimal subsidy, policy makers need to forecast the
additional investment required to make a technology commer-
cially viable, such that governmental intervention is no longer
needed. In this paper, we use the well-known learning curve model
to quantitatively assess this financing need. Following [16], we
define learning investment as additional finance necessary to help
achieve the cost competitiveness of wind technology as compared
to a business-as-usual energy technology (see Fig. 3 in [16] for a
graphical illustration).

We measure energy technology costs by unit of installed capac-
ity. Thus, the total learning investment over the breakeven time
(Ib), in the form of capital subsidy, can be integrated as

Ib ¼
Z Nb

N0

ðCb � C0ÞdN ð6Þ

2 The two-factor learning curve is Ct = Co(Nt/N0)�a(KSt/KS0)�b where KSt and KS0 are
the knowledge stock at time t and at a starting point (t = 0), respectively; b is the
learning-by-searching coefficient.

3 Eq. (2) is equivalent to Nb = (N0)�(Cb/C0)�1/a at the breakeven time (t = b).
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