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h i g h l i g h t s

� A scale division method of wind power based on HHT and Hurst analysis is proposed.
� The time–frequency components of wind power show different fractal structures.
� These components are superposed and reconstructed into three scale subsequences.
� Each subsequence has a chaotic characteristic and shows its own properties.
� The EMD-LSSVM + ELM method improves the short-term wind power forecasting accuracy.
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a b s t r a c t

The causes of uncertainty in wind farm power generation are not yet fully understood. A method for the
scale division of wind power based on the Hilbert–Huang transform (HHT) and Hurst analysis is proposed
in this paper, which allows the various multi-scale chaotic characteristics of wind power to be investi-
gated to reveal further information about the dynamic behavior of wind power. First, the time–frequency
characteristics of wind power are analyzed using the HHT, and then Hurst analysis is applied to analyze
the stochastic/persistent characteristics of the different time–frequency components. Second, based on
their fractal structures, the components are superposed and reconstructed into three series, which are
defined as the Micro-, Meso- and Macro-scale subsequences. Finally, indices related to the statistical
and behavioral characteristics of the subsequences are calculated and used to analyze their nonlinear
dynamic behavior. The data collected from a wind farm of Hebei Province, China, are selected for case
studies. The simulation results reveal that (1) although the time–frequency components can be decom-
posed, the different fractal structures of the signal are also derived from the original series; (2) the three
scale subsequences all present chaotic characteristics and each of them exhibits its own unique proper-
ties. The Micro-scale subsequence shows strong randomness and contributes the least to the overall fluc-
tuations; the Macro-scale subsequence is the steadiest and exhibits the most significant tendency; the
Meso-scale subsequence which possesses the greatest variance contribution rate and the maximum lar-
gest Lyapunov exponent, is the dominant factor driving the fluctuation and dynamic behavior of wind
power; (3) the short-term predictions of these three subsequences based on extreme learning machine
(ELM) and least-squares support vector machine (LSSVM) models have validated the above analysis
results, which show that the number of steps of look-ahead predictability have pursued an ordinal trend
in term of the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) and the prediction error
contribution rate of the Meso-scale subsequence is the maximum. Furthermore, the short-term wind
power forecasting of 6-step-ahead based on the multi-scale analysis is performed by EMD-LSSVM
+ ELM and the normalized Mean Absolute Error (nMAE) and normalized Root Mean Square Error
(nRMSE) have been decreased by 49.45% and 44.30% compared with those of LSSVM, and 37.96% and
27.12% compared with those of EMD-LSSVM, respectively.
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1. Introduction

Throughout the world, the utilization of wind energy is becom-
ing wide spread because of its advantages of reproducibility and
environmental friendliness as well as the rapid development of
wind power generation technology. With the increasing integra-
tion of wind power into the grid, however, the stochastic and inter-
mittent nature of wind power generation [1] poses an increasing
risk to the system reliability and power quality, and thus grid oper-
ation issues such as generation schedules and reserve allocation
become topics of concern [2–6]. These difficulties hinder the fur-
ther exploitation of wind energy.

In recent years, extensive efforts have been devoted to analyz-
ing the probability distribution and fluctuation characteristics of
wind power using statistical approaches based on real measured
data regarding wind power or wind speed. The Weibull probabil-
ity density function [7–9] has been widely used to model the
wind speed distribution on various time scales, e.g., daily,
monthly, seasonal or annually. The skewed generalized error
and skewed t distributions proposed to model the wind speed
in Turkey were proved to be quite flexible and to offer improve-
ments over the Weibull distribution in the estimation of the wind
speed distribution and the wind power density distribution [10].
Yu et al. [11] assessed seasonal and diurnal wind power patterns
to characterize the multi-regional wind power fluctuations in
China based on wind speed data from the NASA GEOS-5 DAS sys-
tem. In [12], the t location-scale and Laplace distributions were
used to describe the minute-scale wind power distribution and
the average wind power variations, respectively. When describe
the distribution of hourly wind power variations modeled as an
exponential decay, the Laplace distribution was superior to a gen-
eral extreme value and a normal distribution according to v2

goodness-of-fit tests [13,14]. Moreover, in several recent studies,
wind speed or wind power variability has been characterized
based on power spectral density analysis in the frequency domain
[15–18].

The studies mentioned above, which have focused on statisti-
cal distribution characteristics and time and/or frequency analy-
ses have made significant contributions to understanding the
uncertainties of wind power. Quantitative analysis on the behav-
ior characteristics of wind speed or wind power is more beneficial
for capturing the inherent characteristics of wind power. The
fractal dimension was used to quantitatively analyze the self-
similarity of hourly and daily wind speeds [19,20]. And combined
with the Hurst exponent which was commonly utilized to evalu-
ate the long-term persistence of time series [21], the predictabil-
ity indices of daily wind speed time series from Saudi Arabia were
calculated [22]. In [23], the Lyapunov exponent was calculated to
characterize the chaotic dynamic behavior of wind power. It
should be noted that these studies were all performed on a single
scale.

In essence, wind power exhibits extremely complex nonlinear
dynamic characteristics, which are affected by many factors, such
as wind direction, air temperature, air humidity, illumination and
earth surface roughness. These complex behavior characteristics
cannot be revealed through investigations at only a single scale.
Various widely used multi-scale analysis methods can reveal the
non-stationary or transitory characteristics of signals, such as
abrupt changes and trends, and the physical phenomena underly-
ing them [24]. Furthermore, many studies have shown that the
accuracy of wind speed or wind power prediction can be enhanced
by applying wavelet transforms (WTs) and empirical mode decom-
position (EMD) [25–27]. However, traditional analyses of the char-
acteristics of wind power on different scales based solely on time
or frequency lack to mine the characteristics of the different scales

that affect the overall wind power behavior. Moreover, to apply
WTs, it is necessary to select the mother wavelet a priori and the
resulting lack of self-adaptability of this method somewhat limits
its ability to analyze nonlinear and non-stationary signals. By con-
trast, the HHT algorithm, which was first proposed by Huang et al.
[28] and can be used to adaptively decompose and transform sig-
nals based on their intrinsic features, is more suitable for analyzing
nonlinear and non-stationary time-varying signals.

Therefore, in this paper a method for the scale division of wind
power based on the HHT and Hurst analysis is proposed, and the
multi-scale chaotic characteristics of wind power are thus inves-
tigated. First, the HHT is adopted to analyze the time–frequency
characteristics of wind power, and then Hurst analysis is applied
to determine the fractal characteristics of the time–frequency
components. The Hurst exponents and self-similar dimensions
are calculated to quantitatively analyze the persistent/stochastic
and fractal characteristics of these wind power components.
Second, these time–frequency components which exhibit approx-
imate random walk modes, dual fractal structures and strongly
persistent tendency are superposed and reconstructed into three
scale subsequences, defined as Micro-, Meso- and Macro-scale
subsequences, respectively. And then indices related to the statis-
tical and behavioral characteristics of these three subsequences
are calculated to analyze their multi-scale nonlinear dynamic
behaviors. After that, short-term predictions of these three subse-
quences are generated using the ELM and LSSVM methods to test
the validity of the analysis results. Finally, a case study of short-
term wind power forecasting for 6-step-ahead is performed to
clarify the real implementation of the multi-scale analysis results
of wind power.

This paper is structured as follows. The methods of data prepro-
cessing and analysis, including the Hilbert–Huang transform and
the end effect, the Hurst analysis and the chaos analysis, are
described in Section 2. The simulation data and results as well as
the analysis and verification of the proposed method are presented
and a case study of short-term wind power forecasting is also per-
formed based on the multi-scale analysis in Section 3. Finally, Sec-
tion 4 summarizes and concludes the study.

2. Data preprocessing and analysis methods

2.1. Hilbert–Huang transform and end effect

The HHT is a multi-resolution analysis method and is widely
applied in many research fields, such as earthquake studies [29],
machinery fault diagnosis and detection [30] and ocean studies
[31]. This paper makes full use of the advantages of this method
to study the time–frequency characteristics of wind power. The
method includes two steps: empirical mode decomposition
(EMD) and the Hilbert transform. Using the EMD method, a signal
can be decomposed into a finite set of intrinsic mode functions
(IMFs). For any IMF, the following two conditions must be satis-
fied: (1) the numbers of maxima and zero-crossings in the entire
dataset must be equal or differ by at most one and (2) the mean
value of the envelope defined by the local minima and the envelope
defined by the local maxima should be equal to zero at every point
in a time series. Then a ‘‘sifting process” is designed to decompose
a given signal into several IMF modes without any a priori basis
assumption. The first extracted IMF corresponds to the highest
frequency component of the signal, whereas the lower frequency
components are represented by higher-order IMFs. The signal x(t)
can be exactly expressed as the following linear combination:

xðtÞ ¼
Xn
i¼1

IMFiðtÞ þ rðtÞ ð1Þ

52 Z. Liang et al. / Applied Energy 159 (2015) 51–61



Download English Version:

https://daneshyari.com/en/article/6685519

Download Persian Version:

https://daneshyari.com/article/6685519

Daneshyari.com

https://daneshyari.com/en/article/6685519
https://daneshyari.com/article/6685519
https://daneshyari.com

