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a b s t r a c t

In this paper a novel Radial Basis Collocation Method (RBCM) has been applied to investigate the het-
erogeneous conduction and bioheat transfer problem. RBCM is a strong form meshless method which
uses Radial Basis Function (RBF) interpolation to obtain the solution of the partial differential equation
governing the problem under consideration. RBFs hold many advantages like exponential convergence,
less dependence on the dimensionality of the problem, ability to deal with complex geometries and ease
of implementation, which can be harnessed to one’s benefit. Application of RBF interpolation under the
framework of RBCM retains its inherent advantages provided that the errors are controlled appropriately.
In this research, RBFs have been utilized to solve the steady state heterogeneous conduction and bioheat
transfer problem. Approximation function is developed using inverse multiquadratic (IMQ) radial basis
functions (RBFs). RBFs are infinitely differentiable functions and have global support. For heterogeneous
problem, application of RBF can however become troublesome because of the nonlocality of the RBFs and
errors in the domain, interface and boundary can grow large to make the problem unstable. To obtain the
exponential convergence, errors at the boundaries, domain and interfaces need to be controlled.
Weighted collocation has been used to overcome this problem and retain the inherent properties of the
RBFs. RBCM has been successfully applied to solve strong heterogeneous heat conduction and bioheat
transfer problem which shows its validity and effectiveness.

� 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Accuratemeasurement of temperature in the biological tissues is
very important since most of the thermal therapies like, hyper-
thermia, hypothermia require precise information about the tem-
perature field inside the tissues and their outcome depends on the
final achieved temperature. To accomplish this, many bioheat
models like Wulff continuum model [1], Klinger continuum model
[2], continuum model of Chen and Holmes [3], Pennes bioheat
transfermodel [4], andWeinbaumeJiji bioheatmodel [5] have been
proposed to predict the temperature inside the tissues but Pennes’
bioheatmodel attractedmost attention because of its simplicity and
accuracy for the most cases [4,6]. To obtain the temperature field
inside the body is a complex problem because of the presence of
inherent heterogeneous structures like veins, arteries and accom-
panying blood perfusion. Complexity, nonuniformity and health
restrictions make it difficult to use experimental procedures to

measure the temperature or the property of interest in vivo. To
prevent thermal damage, boundary of the isotherm that represents
the critical temperatureneeds to be known. For clinical purposes the
inherent limitation of computerized tomography (CT), ultrasound
and magnetic resonance imaging (MRI) make it difficult to capture
the boundary of thermal damage. For this purpose numerical sim-
ulations offer a relative inexpensive and easy option which can be
used effectively for multitude of situations. Traditionally, conven-
tional methods such as Finite Element Method [7,8] (FEM), Finite
Difference Method (FDM) [9], Monte Carlo Method (MCM) [10] and
Boundary Element Method (BEM) [11] have been used for such
simulations. These methods are well established and have been
developed over the course of many decades. The common charac-
teristic of all these is that they all require mesh to discretize the
domain under consideration. In certain cases, the effort required to
create a numerical mesh is more than the calculation of solution
itself [8,9,11]. The physics and complexity of the geometries may
require extremely fine mesh which could result in very skewed el-
ements leading to large errors which would hinder in obtaining an
accurate and stable solution.

In order to overcome the meshing difficulties, various meshless
methods have been proposed by researchers [12e18]. Meshless
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methods hold promise for many applications because of their ad-
vantageous features over the conventional methods like FEM or
BEM. These methods depend on the point cloud data with no
interconnection between the points rendering them more suitable
for adaptivemesh refinement. Their point dependencymakes them
easier to deal with the complex geometries and makes them less
sensitive to the dimensionality of the problem. Many meshless
methods have been proposed over the course of last two decades
which can be broadly classified into two main categories namely
weak formulation or strong formulation depending on the process
followed for obtaining the approximate solution of the governing
differential equations. Weak formulations like element free Galer-
kin method (EFGM), method of fundamental solutions (MFS)
[19,20] either require background grid to do the numerical inte-
gration of the weak form or need to solve Helmholtz equations
which makes them computationally expensive. Strong methods
like radial basis collocation method (RBCM) [21,22] deal with the
original governing differential equations and point collocation is
used to satisfy the governing equations in the domain and on the
boundary. Strong form meshless methods are ‘truly meshless’
because they don’t require mesh in any form. Multiquadratics are
positive definite radial basis functions (RBFs) and have global
support. Kansa et al. [23] first used multiquadratics RBFs for the
solution of partial differential equations and since then there have
beenmany developments on the properties and application of RBFs
[15,19,20,22,24e28]. In this research RBCM has been utilized to
simulate the bioheat transfer problem in the two dimensional
domain. Approximation function is developed using inverse mul-
tiquadratic (IMQ) radial basis function. The aim of this research is
firstly to demonstrate the effectiveness of the RBCM for simulating
the heterogeneous heat conduction problem and secondly to apply
the said method to bioheat transfer problem for accurate predic-
tion. The research objectives were successfully achieved and the
results presented in the later sections of this publication are indi-
cative of the appropriateness of RBCM for the above said problems.
For this research only steady state problem is considered which can
easily be extended to unsteady case. Unsteady analysis can be
carried out by discretizing the time derivative and the problem can
be solved at each time step similar to steady problem.

2. Theory of radial basis collocation method (RBCM) on 2D
heterogeneous problem

Strong form collocation methods are a form of meshless
methods which don’t require numerical mesh to solve a problem
and no preconditioning is required for the original equations
describing a particular phenomenon. They are in strong form as
they deal with the original equations describing the phenomenon.
For the solution approximation different global RBFs are used. For
this research, RBFs known as inverse multiquadratics will be used.
For general description of RBCM, let’s consider a problem consisting
of open domain U and boundary vU.

The problem can be defined as:

LsTs ¼ f s in U (1)

BsTs ¼ qs on vU

Here Ts represents the local static temperature, Ls denotes the
differential operator inU, Bs is the boundary condition operator. fs is
the source term in the open domain whereas qs is related to
boundary conditions. s represents the domain number.

Let vUg,vUh represent the Dirichlet and Neumann boundaries
respectively then,

BsTs ¼ gs on Dirichlet boundary
BsTs ¼ hs on Neumann boundary

(2)

Let’s consider a general 2D problem consisting of two homo-
geneous materials. Strong heterogeneity of material properties is
encountered at the interface between the two materials. The two
domains are connected by an interface as shown in Fig. 1.

For domain 1, U1:

L1T1 ¼ f 1 in U1

B1gT
1 ¼ g1 in vU1XvUg

B1hT
1 ¼ h1 in vU1XvUh

(3)

For domain 2, U2:

L2T2 ¼ f 2 in U2

B2gT
2 ¼ g2 in vU2XvUg

B2hT
2 ¼ h2 in vU2XvUh

(4)

For Interface G:

T1 � T2 ¼ 0
B1hT

1 þ B2hT
2 ¼ 0

(5)

The temperature solution ~Ti is calculated separately in each
subdomain and can be approximated by evaluating RBFs at collo-
cation points i,e

~TiðxÞ ¼

8><
>:

~T
1
i ðxÞ ¼ g11ðxÞa1i1þg12ðxÞa1i2þ.g1N1

s
ðxÞa1iN1

s
; x˛U

1

~T
2
i ðxÞ ¼ g21ðxÞa2i1þg22ðxÞa2i2þ.g2N2

s
ðxÞa2iN2

s
; x˛U

2 (6)

In Eq. (6) coefficients ajI need to be evaluated at all the collo-
cation points in order to obtain the solution where I contains the
source points whereas j represents the collocation point in
respective domain. Substituting Eq. (6) into Eqs. (3)e(5), results in
an algebraic system of equations which can be easily solved for the
coefficients.

For numerical implementation of RBCM, the following steps are
involved.

Step 1: Identification of collocation points

For ease of implementation, unique set of points in domains,
boundaries and interface are identified for each domain. Let s

Fig. 1. Heterogeneous domain problem.
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