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h i g h l i g h t s

� An overview of optimisation in combustion chemical kinetics is presented.
� Four optimisation methods were implemented and validated.
� Four mechanisms could not initially capture profiles related to ethane and methyl.
� GRI-mechanism 3.0 was optimised in that respect.
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a b s t r a c t

Numerical optimisation related to the estimation of kinetic parameters and model evaluation is playing
an increasing role in combustion as well as in other areas of applied energy research. The present work
aims at presenting the current probability-based approaches along applications to real problems of
combustion chemical kinetics. The main methods related to model and parameter evaluation have been
explicated. An in-house program for the systematic adjustment of kinetic parameters to experimental
measurements has been described and numerically validated. The GRI (Gas research institute)
mechanism (version 3.0) has been shown to initially lead to results which are greatly at variance with
experimental data concerning the combustion of CH3 and C2H6. A thorough optimisation of all parame-
ters has been performed with respect to these profiles. A considerable improvement could be reached and
the new predictions appear to be compatible with the measurement uncertainties. It was also found that
neither GRI 3.0 nor three other reaction mechanisms considered during the present work should be
employed (without prior far-reaching optimisation) for numerical simulations of combustors and engines
where CH3 and C2H6 play an important role. Overall, this study illustrates the link between optimisation
methods and model evaluation in the field of combustion chemical kinetics.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The use of numerical methods for parameter estimation has
become widespread in fields related to applied energy research.
Amongst many other applications, they have been used for the
development of a non-linear model describing a wind turbine [1]
and modelling a fuel-cell [2], the heat dynamics of a building [3],
and a hydraulic turbine [4], to name but a few of them. They are
also increasingly employed for the development and evaluation
of combustion models [5–8]. Computational Fluid Dynamics
(CFD) simulation has become an essential ingredient for the opti-
mal utilisation of complex power generation systems based on
combustion [9–11]. Reliable computational predictions require
the presence of an accurate chemical kinetic model which is

generated from the reduction of a complex reaction mechanism
[12,13]. Since the reduction process lowers almost inevitably the
accuracy of the kinetic description of the combustion [14], the
detailed reaction mechanism must reach a high level of trustwor-
thiness for allowing realistic CFD simulations of complex systems
such as, say, internal combustion engines or gas turbines. The
uncertainties of kinetic coefficients can lead to large prediction
errors with respect to the release of pollutants and important com-
bustion features such as ignition delay times or flame velocities
because the parameter imprecisions get propagated towards all
results [15,16]. Hence, a good understanding of combustion kinet-
ics has become vital for the optimal and sustainable utilisation of
fossil and renewable fuels [10,17,18] and the use of new fuels such
as synthetic ones. It is universally recognised amongst researchers
that the development of micro-kinetic detailed reaction
mechanisms has been a great step forward for both the chemical
understanding and the predictability of combustion processes.

http://dx.doi.org/10.1016/j.apenergy.2015.05.002
0306-2619/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: + 44 1524 594645.
E-mail address: m.fischer@lancaster.ac.uk (M. Fischer).

Applied Energy 156 (2015) 793–803

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier .com/locate /apenergy

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2015.05.002&domain=pdf
http://dx.doi.org/10.1016/j.apenergy.2015.05.002
mailto:m.fischer@lancaster.ac.uk
http://dx.doi.org/10.1016/j.apenergy.2015.05.002
http://www.sciencedirect.com/science/journal/03062619
http://www.elsevier.com/locate/apenergy


Such reaction mechanisms include all possible elementary reac-
tions that can occur under a wide variety of conditions. They allow
a detailed description of the chemical processes taking place on a
molecular level. The determination of parameters corresponding
to the real chemistry is a complex task. Traditionally, it has been
achieved in three different manners.

� By designing experiments isolating some reactions in such a
way that the model variables corresponding to the measure-
ments can be expressed analytically as a function of parameters
of interest. The optimal values can then be identified mathe-
matically through a least-square regression.
� By using methods from theoretical chemistry such as Density

Functional Theory calculations [19] coupled with Transition
State Theory. Depending on the involved assumptions and
simplifications, some methods, especially semi-empirical
techniques, can lead to great uncertainties with respect to the
evaluated parameters.
� By analogy with similar reactions with known rate coefficients.

An unknown uncertainty is also introduced by this approach.

If the mechanism contains all possible reactions playing a role
in the experiments at hand and enough profiles are available for
an unambiguous estimation of all active parameters, the first
method is the most promising one for obtaining values with great
accuracy. Nevertheless, most chemical kinetic descriptions cannot
be sufficiently simplified to provide analytical expressions precise
enough for parameter estimation. In such a case, an optimisation
method minimising the distance dðpÞ between experimental
results and model predictions must be utilised. The determination
of optimal coefficients is itself closely related to model evaluation
which consists of assessing how well a reaction mechanism
can match a set of measurements.

The present article concerns the use of numerical optimisation
methods for the evaluation of models used to describe combustion
chemical kinetics such as those applied to the CFD simulation of
power generation. It has been organised in such a way to remain
relevant for model evaluation in other fields of applied energy. In
Section 2, different approaches to the evaluation of kinetic models
are presented and examined. In Section 3, the optimisation pro-
gram Kinefit [14] is presented and validated. In Section 4, Kinefit
is applied to the combustion of ethane and the methyl free radical.
Finally, in Section 5, the conclusion of this work and future outlook
are given.

2. Methodologies for model evaluation in chemical kinetics

2.1. Frequentist and Bayesian approaches

Frequentism and Bayesianism [20] are currently the main
approaches utilised for the evaluation of predictive models.
While confronted with the problem of estimating parameters out
of a set of experimental data, both frequentists and Bayesians view
a measurement (which might be a concentration, an ignition delay
time, a flame velocity and so on.) as composed of three terms:

m ¼ mt þms þm0 ð1Þ

where mt is its true value, ms its systematic error and m0 a random
fluctuation around mt þms. The systemic error is always an
unknown term which would be otherwise corrected. For the sake
of parameter estimation, one has to suppose it is negligible and
set it to zero. It is an assumption which might be well founded in
cases where the measurement method has been independently val-
idated. It can be more problematic otherwise, in situations where
the measurement technique has not been well assessed. Let N be

the number of measured profiles, ni the number of measurements
for the i-th profile with i 2 f1 . . . Ng whereas mi;j and ei;j designate
the model and experimental values, respectively. Let ri;j denote
the standard deviations corresponding to the experimental values.
The chi-squared norm is defined as

d ¼ X2 ¼
XN

i¼1

Xni

j¼1

mi;j � ei;j

ri;j

� �2

: ð2Þ

Since the standard deviations are frequently unknown, they are
often pragmatically approximated as being proportional to the
measurements ri;j ¼ �ei;j whereby measurements equal to zero
are not considered in the sum of Eq. (2). Following this rule, the
relative distance or relative least-square can be defined as

d ¼ X2 ¼
XN

i¼1

Xni

j¼1

mi;j � ei;j

ei;j

� �2

: ð3Þ

Under the assumption that the measurement errors are normally
distributed, the probability that the experimental values would
obtain if model M is correct pðE j MÞ can be computed [8]. If
v ¼ Ndata � Nparameters is large then

pðEjMðkÞÞ ¼ pðX2Þ ¼
C v

2 ;
X2

2

� �
C
2

ð4Þ

whereby k represents the ensemble of uncertain parameters taking
on some value ranges [8].

It is at the next stage that Bayesians and frequentists part ways.
While the former use this value and a prior probability distribution
of the parameter space for computing a posterior distribution via
Bayes’ theorem (with problems discussed in Section 2.2), the latter
do not consider that model M has a probability of being true.
Instead, they judge it according to its agreement with the experi-
mental data represented by pðE j MðkÞÞ which should be below a
given threshold (there are no universal rules for determining such
limits). If the model cannot reproduce the measurements within
their uncertainties, it is rejected, otherwise it is deemed worthy
of further considerations. It is worth noting that the truth of a
model is indicated solely by its ability to correctly reproduce the
set of experimental data while all other possible alternatives fail to
do so [21]. The remainder of this subsection focuses on the
frequentist approach to model evaluation.

If the parameters of a reaction mechanism could only take on
one set of precise values known beforehand, the whole modelling
enterprise in chemical kinetics would merely consist of comparing
the performances of different models. In practice, this is never the
case. A priori, parameters can have any of the values included
within so-called feasible sets accounting for theoretical and exper-
imental constraints. The parameters must then be optimised
within this domain so as to minimise X2ðkÞ and hence also max-
imise pðE j MðkÞÞ according to the spirit of Maximum Likelihood
Estimation [22]. The most widespread form of such feasible sets
consists of hypercubes where all parameters are included between
a lower and an upper bounds, that is li 6 pi 6 ui. The problem of
this representation lies in the fact that parameters are very often
tightly correlated with respect to their accounting for experimental
data. Consequently, the feasible set is frequently spanned up by a
complex geometry (which may not even be continuous).
Frenklach [23] emphasised the need to consider the whole ensem-
ble of available measurements for fitting kinetic parameters while
determining a feasible set defined as all physically possible param-
eter values compatible with the experimental data and their uncer-
tainties. In this way, the size of the feasible set (i.e. the imprecision
of the parameter set) diminishes as new measurements come in.
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