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HIGHLIGHTS

« Implementation of reinforcement learning control for LowEx Building systems.
« Learning allows adaptation to local environment without prior knowledge.

« Presentation of reinforcement learning control for real-life applications.

« Discussion of the applicability for real-life situations.
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Over a third of the anthropogenic greenhouse gas (GHG) emissions stem from cooling and heating build-
ings, due to their fossil fuel based operation. Low exergy building systems are a promising approach to
reduce energy consumption as well as GHG emissions. They consists of renewable energy technologies,
such as PV, PV/T and heat pumps. Since careful tuning of parameters is required, a manual setup may
result in sub-optimal operation. A model predictive control approach is unnecessarily complex due to
the required model identification. Therefore, in this work we present a reinforcement learning control
(RLC) approach. The studied building consists of a PV/T array for solar heat and electricity generation,
as well as geothermal heat pumps. We present RLC for the PV/T array, and the full building model.
Two methods, Tabular Q-learning and Batch Q-learning with Memory Replay, are implemented with real
building settings and actual weather conditions in a Matlab/Simulink framework. The performance is
evaluated against standard rule-based control (RBC). We investigated different neural network structures
and find that some outperformed RBC already during the learning phase. Overall, every RLC strategy for
PV/T outperformed RBC by over 10% after the third year. Likewise, for the full building, RLC outperforms
RBC in terms of meeting the heating demand, maintaining the optimal operation temperature and com-
pensating more effectively for ground heat. This allows to reduce engineering costs associated with the
setup of these systems, as well as decrease the return-of-invest period, both of which are necessary to
create a sustainable, zero-emission building stock.
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1. Introduction

Residential and commercial buildings account for nearly 40% of
energy consumption and for 36% of greenhouse gas emissions [1].
Particularly, the energy needed for heating, which takes almost
half of the energy used in building systems [2], is commonly sup-
plied as electricity/fossil energy carrier with low efficiency and
high greenhouse gas emissions [3]. Low exergy (LowEx) buildings
are one promising approach to tackle both energy conservation
and CO, reduction challenges [4]. By LowEx buildings, we under-
stand buildings whose ratio of consumed energy to distributed
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energy, such as heat, is small [5]. This can be achieved using heat
pumps with sufficiently high coefficients of performance (COP). It
follows that buildings with low energy consumption e.g., passive
or net-zero-energy buildings, but powered using a burning process
cannot be considered as LowEx buildings. Combining the heat
pump with photovoltaic-thermal (PV/T) modules allows to heat
the building exclusively from renewable energy sources, making
it emission-free.

In this research, we study the LowEx building shown in Fig. 1,
located in a residential area in Zurich, Switzerland, in an oceanic
climate (Képpen Cfb) [5,6]. The window facade ratio is 25%, and
the construction is a Misapor facade with a U-value of
0.24 W/m?/K. The windows have U-values of 1 W/m?/K, g-values
of 0.3, and light transparency of 0.58. The building has a heated
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Fig. 1. The LowEx building studies in this research.

surface of approximately 900 m?, and distributes the heat through
floor heating. The roof is never shadowed, whereas the first floor is
partially shadowed from November to February.

The schematic plot of the LowEx building systems is given in
Fig. 2. Its main components are hybrid photovoltaic-thermal
(PV/T) panels (Fig. 2(a)), geothermal boreholes (Fig. 2(c)), and high
COP heat pump (Fig. 2(d)). There are other possible variations with
different combinations of these components [7].
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Fig. 2. Schematic of a low exergy building: (a) Hybrid photovoltaic-thermal (PV/T)
panels with heat exchanger, (b) floor heating, (c) dual zone boreholes, (d) high COP
heat pump, and (e) low temperature hot water storage. (blue: supply line, red:
return line) Adapted from [5]. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

LowEx building systems create more flexibility and generate
new possibilities for the design of high performance buildings
[5]. They maximize the connection to the freely available dispersed
energy in the environment (e.g. solar, geothermal, or waste heat
recycling). The core module is a heat pump with a high coefficient
of performance (COP) [5]

COP =g -COPigeas =8 7——— (1)

where g is the machine characteristic factor, its typical range is from
0.4 to 0.6, and Ty, and T q are sink and source temperature (in K),
respectively. The difference, Thot — Tcold, is the temperature lift. High
COP is achieved through low temperature lift, i.e., by increasing Tqq
and decreasing Tp. With the arrangement of large heat exchange
surface, like floor/wall/ceiling heating (Fig. 2(b)), Tho: can be easily
reduced to 301-305K (28-32°C). Natural soil temperature
increases proportionally with increased depth (e.g. 3°C/100 m in
Switzerland); thus, a deep borehole (Fig. 2(c)) is suitable as heat
pump source [4,5]. PV/T panels (Fig. 2(a)) provide ground heat com-
pensation besides electricity in summer times to maintain the ini-
tial Tcq level at the beginning of next heating period [4].

Generally, the primary goal of controlling the building environ-
ment (HVAC system) is to maintain the comfort level of the occu-
pants, and to achieve good energy efficiency [8-10]. Classic
controllers, such as ON/OFF and PID control, are the most widely
used ones due to their simple structure and low initial cost [8].
Yet, HVAC systems are non-linear, multiple-input, multiple-
output (MIMO) systems with large time delays and high order
dynamics [8]. This substantially limits the performance of the clas-
sical control techniques. Advanced control techniques, such as
model predictive control (MPC) present promising results [11,8],
especially incorporating dynamic weather [12] and occupancy
forecasting [13]. For instance, the MPC approach in [14], uses
weather predictions to control building heating systems and
achieves savings between 15% and 28% depending on the systems
and weather conditions. However, the accuracy of these methods
depends heavily on a good quality model of the building dynamics,
which is difficult to construct given the complexity of HVAC sys-
tems [14,15].

Another potential approach is using intelligent or soft con-
trollers that do not require a model, and are based on human per-
ception of comfort [9]. Given that human sensation is subjective,
intelligent controllers offer a good balance between occupant com-
fort and energy conservation in a dynamic environment. Several
control strategies, e.g., variations of artificial neural networks
(ANN) [16-18], and other methods have been proposed. For
instance, to optimize air conditioning setback scheduling in public
buildings, in [17] two years of weather data is used to train the
neural network. A neural network is also used in [19] as a predic-
tive controller for heating that adapts itself to real conditions (cli-
mate, building and user behavior) by solving the optimal control
problem using dynamic programming. Further studies have
demonstrated promising results using intelligent techniques alone
or combined with other techniques [20], see also [9] for a review of
learning algorithms. The drawbacks of these methods are that they
typically require a large learning set in order to perform optimally.

Apart from the above mentioned techniques, reinforcement
learning control (RLC) has also been considered for HVAC systems.
The advantage of this approach is that the controller continuously
learns from different operating conditions through interaction
with the building, thereby improving its control policy online
[21]. Thus, RLC offers a model-free approach capable of adapting
to the local environment and operation conditions, such that the
resulting controller is robust to time-varying disturbances.

Although numerical analysis and simulation study show that
pure reinforcement learning can direct the controller to a
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