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h i g h l i g h t s

�We compare two demand side management in a day-ahead electricity wholesale market.
� We develop and reconcile social welfare & industrial DSM mathematical models.
� We show the industrial netload has an additional forecast quantity of baseline.
� We analytically and numerically show the model equivalence with accurate baseline.
� We numerically demonstrate the baseline errors lead to higher and costlier dispatch.
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a b s t r a c t

The intermittent nature of renewable energy has been discussed in the context of the operational chal-
lenges that it brings to electrical grid reliability. Demand side management (DSM) with its ability to allow
customers to adjust electricity consumption in response to market signals has often been recognized as
an efficient way to mitigate the variable effects of renewable energy as well as to increase system effi-
ciency and reduce system costs. However, the academic & industrial literature have taken divergent
approaches to DSM implementation. While the popular approach among academia adopts a social wel-
fare maximization formulation, the industrial practice compensates customers according to their load
reduction from a predefined electricity consumption baseline that would have occurred without DSM.
This paper rigorously compares these two different approaches in a day-ahead wholesale market context
analytically and in a test case using the same system configuration and mathematical formalism. The
comparison of the two models showed that a proper reconciliation of the two models might make them
mitigate the stochastic netload in fundamentally the same way, but only under very specific conditions
which are rarely met in practice. While the social welfare model uses a stochastic net load composed of
two terms, the industrial DSM model uses a stochastic net load composed of three terms including the
additional baseline term. DSM participants are likely to manipulate the baseline in order to receive
greater financial compensation. An artificially inflated baseline is shown to result in a different resources
dispatch, high system costs, and unachievable social welfare, and likely requires more control activity in
subsequent layers of enterprise control.

� 2015 Published by Elsevier Ltd.

1. Introduction

1.1. Motivation

The intermittent nature of renewable energy has been dis-
cussed in the context of the operational challenges that it brings
to electrical grid reliability [1–3]. The fast fluctuations in

renewable energy generation require high ramping capability
which must be met by dispatchable energy resources.
Additionally, a sudden loss of renewable generation can threaten
grid reliability in the absence of adequate generation reserves.

In contrast, demand side management (DSM) with its ability
to allow customers to adjust electricity consumption in response
to market signals has often been recognized as an efficient
way to shave load peaks [4–7] and mitigate the variable effects
of renewable energy [8–10]. This work focuses on DSM where
end users can change their consumption in response to dynamic
changes in electricity price signals [11], rather than static energy
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efficiency techniques. It increases the bulk electric system flexi-
bility [12,13] and reliability [7,13–15] by providing additional
dispatchable resources which can potentially offset imbalances
caused by renewable energy [16,17]. DSM has also been advo-
cated for its ability to increase system efficiency and reduce sys-
tem costs [18,19]. By encouraging customers to adjust their
electricity consumption in response to market signals, DSM
reduces the need for more expensive generators with high ramp-
ing capability. Meanwhile, DSM increases the utilization of gener-
ating capacities that would have been otherwise idle during
off-peak hours, thus reducing the real cost of renewable integra-
tion [20]. The electricity supply side, load-reducing customers
and non-load-reducing customers all benefit economically from
load reductions [21–23].

The deregulation of electricity markets [24–28], along with the
advances in information and communication technologies

[12,29–31], has motivated more active DSM programs. As a result,
Independent System Operators (ISOs) and Reliability Transmission
Organizations (RTOs) have been implementing DSM for its poten-
tial to lower market prices, reduce price volatility, improve cus-
tomer options, and increase the elasticity from wholesale to
retail market [32]. Researches on DSM have addressed the mini-
mization of energy consumption, maximization of customer utility,
the minimization of customer discomfort, the stabilization of elec-
tricity prices, and multi-objective optimizations from the customer
side [33–40]. In addition, there have also been studies on the inte-
gration of DSM and renewable uncertainty [41], centralized or dis-
tributed demand control algorithms [14,30,42–46], demand-side
storage [47,48], models of customer behavior [49], and prediction
of DSM participation potential [50–52].

Despite its recognized importance [53–55], the industrial and
academic literature seem to have taken divergent approaches to

Nomenclature

GC subscript for dispatchable (controllable) generators (e.g.
thermal plants)

GS subscript for stochastic generators (e.g. wind, solar
photo-voltaic)

DC subscript for dispatchable (controllable) demand units
(i.e. participating in DSM)

DS subscript for stochastic demand units (i.e. conventional
load)

i index of dispatchable generators
j index of dispatchable demand unit
k index of stochastic generators
l index of stochastic demand unit
t index of unit commitment time intervals
NGC number of dispatchable generators
NDC number of dispatchable demand units
NGS number of stochastic generators
NDS number of stochastic demand units
T number of unit commitment time intervals
W social welfare
PGCit dispatched power generation at the ith dispachable

generator in the tth time interval
PDCjt dispatched power consumption at the jth dispatchable

demand unit in the tth time interval
P̂DCjt forecasted power consumption of the jth dispatchable

demand unit in the tth time interval
~PDCjt baseline power consumption of the jth dispatchable

demand unit in the tth time interval
P̂GSkt forecasted power generation at the kth stochastic

generator in the tth time interval
P̂DSlt forecasted power consumption of the lth stochastic

demand unit in the tth time interval
PGCi min. capacity of the ith dispatchable generator
PDCj min. capacity of the jth dispatchable demand unit
RGCi min. ramping capability of the ith dispatchable

generator
RDCj min. ramping capability of the jth dispatchable demand

unit
PGCi max. capacity of the ith dispatchable generator
PDCj max. capacity of the jth dispatchable demand unit
RGCi max. ramping capability of the ith dispatchable

generator
RDCj max. ramping capability of the jth dispatchable demand

unit
CGCi cost of the ith dispatchable generator
SGCi startup cost of the ith dispatchable generator
DGCi shutdown cost of the ith dispatchable generator

RGCit running cost of the ith dispatchable generator in the tth
time interval

AGCi quadratic cost function coefficient of the ith dispatchable
generator

BGCi linear cost function coefficient of the ith dispatchable
generator

fGCj cost function constant of the ith dispatchable generator
UDCj demand utility of the jth dispatchable demand unit
SDCj startup utility of the jth dispatchable demand unit
DDCj shutdown utility of the jth dispatchable demand unit
RDCjt running utility of the jth dispatchable demand unit in

the tth time interval
ADCj quadratic utility function coefficient of the jth dispatchable

demand unit
BDCj linear utility function coefficient of the jth dispatchable

demand unit
fDCj utility function constant of the jth dispatchable demand

unit
CDCj cost of the jth virtual generator
SDCj startup cost of the jth virtual generator
DDCj shutdown cost of the jth virtual generator
RDCjt running cost of the jth virtual generator in the tth time

interval
ADCj quadratic cost function coefficient of the jth virtual

generation
BDCj linear cost function coefficient of the jth virtual

generation
nj cost function constant of the jth virtual generation
wGCit binary variable for the state of the ith dispatchable

generator in the tth time interval
uGCit binary variable for the startup state of the ith dispatchable

generator in the tth time interval
vGCit binary variable for the shutdown state of the ith

generator in the tth time interval
wDCjt binary variable for the state of the ith dispatchable

demand unit in the tth time interval
uDCjt binary variable for the startup state of the jth dispatchable

demand unit in the tth time interval
vDCjt binary variable for the shutdown state of the jth

dispatchable demand unit in the tth time interval
xDCjt binary variable for the state of the jth virtual generation

in the tth time interval
lDCjt binary variable for the startup state of the jth virtual

generation at the beginning of the tth time interval
mDCjt binary variable for the shutdown state of the jth virtual

generation at the beginning of the tth time interval
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