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a b s t r a c t

The steady laminar natural convection along a vertical isothermal plate with linear or non-linear Ros-
seland radiation is investigated in this paper. The problem is self-similar and the results are obtained
with the direct numerical solution of the governing equations. This problem is governed by the Prandtl
number, the temperature parameter as well as the radiation parameter, and the influence of these pa-
rameters on the results are presented in tables and figures. A new radiation parameter is introduced
which leads to an asymptotic state. It is found that the temperature profiles take a special S-shape form
with an inflection point. Moreover, it is shown that when the wall shear stress increases the wall heat
transfer decreases and vice versa.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Heat transfer by simultaneous radiation and convection has
applications in numerous technological problems, including com-
bustion, furnace design, nuclear reactor safety, fluidized bed heat
exchangers, solar ponds, solar collectors, turbid water bodies,
photochemical reactors and many others [15]. In an optically dense
medium radiation travels only a short distance before being scat-
tered or absorbed. The local intensity results from radiation at the
nearby surroundings only. For this situation it is possible to trans-
form the integral relation for the radiative energy into a diffusion
relation, like the one for the heat conduction. The diffusion
approximation provides substantial simplification of the problem
([25]; page 632). The most known diffusion approximation is that
of [23].

Probably, the first work on the effect of radiation in a boundary
layer flow is that of Smith [26]. Viskanta and Grosh [27] considered
the effects of thermal radiation on the temperature distribution and
the heat transfer in an absorbing and emitting medium, flowing
over a wedge (FalknereSkan flow), using the Rosseland approxi-
mation. Calculations were presented for a fluid with a Prandtl
number of 1 and different values of the radiation parameter. As
Viskanta and Grosh [27] noted “thermal radiation becomes an

additional factor in hypersonic flight, missile reentry, rocket com-
bustion chambers, power plants for interplanetary flight and gas-
cooled nuclear reactors”.

Afterward, a huge number of papers have been published in the
literature on the influence of radiation in boundary layer flows. The
open literature is now very rich including cases with moving plates,
suction or injection, magnetohydrodynamics, porous media,
viscous dissipation, thermophoresis, variable fluid properties,
chemical reaction, non-Newtonian fluids, micropolar fluids, etc.
Two approaches are used in the literature for the simulation of the
radiation term. One is the non-linear Rosseland approximation and
the other is the linear one which was probably introduced by Ref.
[22]. It should be noted that the dimensionless parameter that is
used in the linearized Rosseland approximation is only the effective
Prandtl number [8], whereas in the non-linear approximation the
problem is governed by three parameters, being the classical
Prandtl number, the radiation parameter and the temperature
parameter. The objective of the present work is to investigate the
effect of radiation on the classical natural convection along a ver-
tical isothermal plate, including either linear or non-linear Rosse-
land approximation. One important work on this field is that of
Hossain and Takhar [4] which concerns the influence of radiation
onmixed convection along a vertical isothermal plate. This problem
is non-similar, whereas the corresponding work on natural con-
vection is similar. Although the mixed convection includes the case
of the natural convection as a limiting case, in the present work the
natural convection is studied separately, in order to give better
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insight regarding the considered physical problem. Therefore, the
present work is an extension of the classical work of natural con-
vection along a vertical isothermal plate [14], to the case of radia-
tion using the Rosseland approximation in an optically thick
medium.

2. Problem definition and solution procedure

Consider the flow along a vertical, semi-infinite plate with u and
v denoting respectively the velocity components in the x and y
directions, where x is the coordinate along the plate and y is the
coordinate perpendicular to x. For a steady, two-dimensional flow,
the boundary layer equations are

Continuity equation:

vu
vx

þ vv

vy
¼ 0 (1)

Momentum equation:

u
vu
vx

þ v
vu
vy

¼ y
v2u
vy2

þ gbðT � T∞Þ (2)

Energy equation:

u
vT
vx

þ v
vT
vy

¼ k
rcp

v2T
vy2

� 1
rcp

vqr
vy

(3)

The boundary conditions are:

At y ¼ 0 : u ¼ 0; T ¼ Tw (4)

As y/∞ u/0; T/T∞ (5)

where y is the fluid kinematic viscosity, k is the fluid thermal
conductivity, T is the fluid temperature, Tw is the plate temperature,
T∞ is the ambient fluid temperature, r is the fluid density, cp is the
specific heat, and qr is the radiation heat flux.

The Rosseland [23] approximation, applies to optically thick
media and gives the net radiation heat flux by the following
expression

qr ¼ � 4
3aR

gradðebÞ (6)

Here aR [m�1] is the Rosseland mean absorption coefficient and
eb [W m�2] the blackbody emissive power which is given in terms
of the absolute temperature T by the StefaneBoltzmann radiation
law eb ¼ sSBT

4, with the StefaneBoltzmann constant being
sSB ¼ 5.6697 10�8 W m�2 K�4.

For a plane boundary layer flow over a hot surface, Eq. (6) of the
net radiation heat flux absorbed in the fluid reduces to

qr ¼ �16sSB
3aR

T3
dT
dy

(7)

Substituting Eq. (7) into Eq. (3), the energy equation becomes
([25]; page 650)

u
vT
vx

þ v
vT
vy

¼ v

vy

��
aþ 16sSBT3

3rcpaR

�
vT
vy

�
(8)

where a ¼ k/(rcp) is the thermal diffusivity.

Equation (8) is non-linear in T and its solution has some diffi-
culties. A significant simplification of the energy equation (8) can be
achieved when the temperature gradients within the flow are
small. In such cases, the Rosseland formula (7) can be linearized
about the ambient temperature T∞, by simply replacing T3 in Eq. (8)
by T3∞. By doing so, equation Eq. (8) becomes

u
vT
vx

þ v
vT
vy

¼
 
aþ 16sSBT3∞

3rcpaR

!
v2T
vy2

(9)

The non-linear Rosseland approximation is represented by Eq.
(8), whereas the linear approximation is represented by Eq. (9).

Equations (1) and (2) together with the energy equation either
in form (8) or (9), represent a two-dimensional parabolic problem.
Such a flow has a predominant velocity in the streamwise coor-
dinate which in the case presented here is the along-plate direc-
tion. In this type of flow, convection always dominates the
streamwise diffusion. Furthermore, no reverse flow is acceptable
in the predominant direction. The solution of this problem in the
present work is obtained using a finite difference algorithm as
described by Ref. [21]. In order to obtain a complete form of both
the temperature and velocity profile at the same cross section, a
nonuniform lateral grid is used. In more detail, Dy takes small
values near the surface (dense grid points near the surface) and
increases along y. A total of 500 lateral grid cells were used. It is
known that the boundary layer thickness changes along the x
direction. For that reason the calculation domain must always be
at least equal to or wider than the boundary layer thickness. In
each case, the maximum potential effort was made in order to
have a calculation domain wider than the actual boundary layer
thickness. This has been achieved by trial and error. It was seen
that in cases of thin the calculation domains, the resulting velocity
and temperature profiles were truncated. In such cases, wider
calculation domains were constructed, in order to capture the
entire velocity and temperature profiles. The parabolic (space
marching) solution procedure is described analytically in the
textbook of Patankar [21] which “remains to this day a model of
simplicity and clarity and one of the most coherent explications of
the finite volume technique ever written” [1]. The above solution
procedure is implicit and unconditionally stable ([28]; page 276),
it has been used extensively in the literature and it has also been
included in fluid mechanics and heat transfer textbooks (see Refs.
[2], p. 364; [28], p. 271; and [13], p. 124). Finally, this method has
also been used successfully in a series of papers by the present
author [16e20].

3. Results and discussion

The problem is governed by three non-dimensional parameters
[4,5,10,11]. These parameters are the Prandtl number, the radiation
parameter and the temperature parameter which are defined as

Pr ¼ y

a
(10)

R∞ ¼ 16sSBT3∞
3kaR

(11)

ww ¼ Tw
T∞

(12)

Important results for this problem are the non-dimensional wall
shear stress and the non-dimensional wall heat transfer defined,
according to classical natural convection along a vertical isothermal
plate ([28], page 324; [24], page 274), as

A. Pantokratoras / International Journal of Thermal Sciences 84 (2014) 151e157152



Download English Version:

https://daneshyari.com/en/article/668711

Download Persian Version:

https://daneshyari.com/article/668711

Daneshyari.com

https://daneshyari.com/en/article/668711
https://daneshyari.com/article/668711
https://daneshyari.com

