
Applied Energy 147 (2015) 192-213

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Evaluating co-benefits of energy efficiency and air pollution abatement in China's cement industry

Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands

HIGHLIGHTS

- Implementation rates of 37 EEMs are quantified for China's cement industry.
- Energy Supply Cost Curves were implemented in the GAINS model.
- The economic energy saving potential is 3.0 EJ and costs is \$4.1 billion in 2030.
- Energy efficiency would lead to large reductions in air pollution.
- The co-benefits decrease average marginal costs of EEMs by 20%.

ARTICLE INFO

Article history: Received 17 December 2014 Received in revised form 5 February 2015 Accepted 24 February 2015 Available online 14 March 2015

Keywords: Co-benefits Energy efficiency Air pollution GAINS Economics

ABSTRACT

China's cement industry is the world's largest and is one of the largest energy consuming, and GHG and air pollutant emitting industries. Actions to improve energy efficiency by best available technology can often bring co-benefits for climate change and air guality through reducing emissions of GHGs and air pollutants emission. In this study, the energy conservation supply curves (ECSC) combined with the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) was used to estimate the co-benefits of energy savings on CO₂ and air pollutants emission for implementing co-control options of energy efficiency measures and end-of-pipe options in the China's cement industry for the period 2011-2030. Results show that there are large co-benefits of improving energy efficiency and reducing emissions of CO₂ and air pollutants for the China's cement industry during the study period. The cost-effective energy saving potential (EEP1 scenario) and its costs is estimated to be 3.0 EJ and 4.1 billion \$ in 2030. The technical energy savings potential (EEP2 scenario) and its costs amount to 4.2 EJ and 8.4 billion \$ at the same time. Compared to the baseline scenario, energy efficiency measures can help decrease 5% of CO2, 3% of PM, 15% of SO2, and 12% of NOx emissions by 2030 in EEP1 scenario. If we do not consider costs (EEP2 scenario), energy efficiency measures can further reduce 3% of CO₂, 2% of PM, 10% of SO₂, and 8% of NOx by 2030. Overall, the average marginal costs of energy efficiency measures will decrease by 20%, from 1.48 \$/GI to 1.19 \$/GI, when taking into account avoided investments in air pollution control measures. Therefore, implementation of energy efficiency measures is more costeffective than a solely end-of-pipe based policy. The plant managers and end users can consider using energy efficiency measures to reach new air pollutants emission standards in China's cement industry. © 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The cement industry consumes around 2% of global primary energy use and produces 5–7% of anthropogenic CO_2 emissions worldwide, together with very high air pollutant emissions, including sulfur dioxide (SO₂), nitrogen oxides (NOx) and particulate matter (PM) [1–4]. Past studies estimate that the global potential of improved energy efficiency and reduced greenhouse gas emissions in the cement industry could save up to 50% of fuel use, and mitigate 18% of direct CO_2 emissions and almost 20% of process CO_2 emissions from current level by 2050, through adopting best available technology, shifting process from wet to dry, replacing fossil fuels with alternative fuels, and decreasing clinker to cement ratio [1,5,6].

China's cement industry has attracted attention worldwide. Despite several efforts, such as increasing the new dry process

AppliedEnergy

^{*} Corresponding author. Tel.: +31 30 253 7405; fax: +31 30 253 7601.

E-mail addresses: s.zhang@uu.nl (S. Zhang), e.worrell@uu.nl (E. Worrell), W.H.J.Graus@uu.nl (W. Crijns-Graus).

Nomenclature

Abbreviations			
ECSC	energy conservation supply curves		
MACC	marginal abatement cost curves		
GAINS	Greenhouse Gas and Air Pollution Interactions and		
	Synergies		
BL scenario baseline scenario			
EEP1	energy efficiency policy scenario 1		
EEP2	energy efficiency policy scenario 2		
BLAP	baseline scenario with air pollutants policy scenario		
EEPAP1	energy efficiency policy with air pollutants policy		
	scenario 1		
EEPAP2	energy efficiency policy with air pollutants policy		
	scenario 2		
GHGs	greenhouse gases		
SO ₂	sulfur dioxide		
NOx	nitrogen oxides		
PM	particulate matter		
Mt	million tons		
NSP kilns new suspension preheater/precalciner kilns			
WHR	waste heat recovery		
SEC	specific energy consumption		
ESP	electrostatic precipitator		
SNCR	Selective Non-Catalytic Reduction		
AEEI	annual autonomous energy efficiency improvement		
EEI	energy efficiency investment		
OECD	The Organisation for Economic Co-operation and		
WEO	Development		
WEO IEA	World Energy Outlook		
ILA	International Energy Agency		
LBNL	International Institute for Applied System Analysis		
ERI	Lawrence Berkeley National Laboratory Energy Research Institute of China		
MIIT	85		
NCSC	Ministry of Industry and Information Technology of China National center for Climate Change Strategy and		
nese	International Cooperation of China		
ITIBMI IT Institute of Building Materials Industry			
mismin in motivate of bunding materials maustry			

	CSIBM	China Development Strategy Institute for Building Materials Industry
nd	CAS EMEP/EE	The Chinese Academy of Sciences A European Monitoring and Evaluation Programme/ European Environment Agency
	CSI IPCC	Cement Sustainability Initiative Intergovernmental Panel on Climate Change
	Symbols	
су	CCE	cost of conserved energy for an energy efficiency measures
	I	investment
су	AF	annuity factor
	$0 \& M^{Fix}$	
	$0 \& M^{Var}$	annual change in operation and maintenance variable cost
	ESP	annual energy saving potential
	PE	future energy price (\$/GJ)
	d	discount rate
	n	lifetime of the energy efficiency measures
	Ep	emissions of pollutant p (for e.g. SO ₂ , PM _{2.5} , CO ₂ , PM ₁₀ , PM _{TSP} , etc.)
	сп	unit cost of end-of-pipe measures
	A_k	energy consumption of each fuel (e.g., coal consump- tion) in iron and steel industry
nd	$ef_{k,m,p}$	emission factor of pollutant <i>p</i> for activity <i>k</i> after applica- tion of control measure <i>m</i>
	$x_{k,m,p}$	share of total activity of type k to which a control measure m for pollutant p is applied
	Α	activity
	ef	uncontrolled emission factor
	efm	controlled emission factor under end-of-pipe measures
าล	•	
nd	Subscript	
	k, m, p	activity type, abatement measure, pollutant, respectively

application, closing obsolete plants, and using various best practice technologies, that have been made by Chinese government in the past two decades, recent studies indicate that there is still large opportunity to improve energy efficiency, reduce emissions of GHGs and air pollutants [7–10]. Comparing the disparity between the current energy efficiency level in China and best practice, indicates a cumulative energy savings potential of 5.0-37.5 EJ in the period 2011-2030, under different scenarios [8,10]. Likewise, if all Chinese cement plants adopted energy efficiency improvement measures, alternative fuels, and clinker substitution (to reduce the clinker-cement ratio), 2.5-4.7 Gt or 53% CO₂ would be saved up to 2050 [7,11]. Lei evaluated local air pollutants, such as PM, SO₂, and NOx in China's cement industry using the proportion of different types of kilns to produce cement and air pollutant emission standards for the Chinese cement industry, and they found that PM and SO₂ emissions would decrease, by shifting from wet to dry process. NOx emissions would decrease because of the increase of precalciner kilns [12]. Furthermore, many studies have shown that the co-benefits (including direct co-benefits and indirect co-benefits) of health effects of energy efficiency improvement and CO₂ mitigation can be substantial [3,13,14]. For instance, Xi [15] estimated the interaction between carbon mitigation and air pollutant control measures in China's cement industry during the 12th Five Year Plan period, and found significant co-benefits of 18 energy saving technologies. However, most of these studies usually do

not monetize the co-benefits when assessing the best available technologies and end-of-pipe options. Therefore, synergies between policies to address energy efficiency and air pollutant emissions mitigation have been neglected by policy makers [15]. The aim of this paper is to address this gap by assessing the co-benefits of energy efficient technologies and air pollutant control in the China's cement industry and quantify how co-benefits would affect the cost effectiveness of energy efficiency technologies.

The structure of this paper is as follows, Section 2 gives an overview of China's cement industry. The methodology, data collection, and scenarios construction is given in Section 3. The results of energy saving potential and emission mitigations of GHGs and air pollutions and associated costs for different scenarios are discussed in Section 4. Section 5 provides a discussion of sensitivities and comparison with other studies. Finally, the conclusion is given in Section 6.

2. Overview of China's cement industry: production, energy consumption and emissions

In this section, we first give an analysis of historical production of clinker and cement and associated fixed investment in China. The Historical energy use, emissions of GHGs and air pollutants and intensity are presented in Sections 2.2 and 2.3, respectively. Download English Version:

https://daneshyari.com/en/article/6687415

Download Persian Version:

https://daneshyari.com/article/6687415

Daneshyari.com