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HIGHLIGHTS

« Environmental performance uncertainty considered in a long-term energy planning model.

« Application to electricity generation planning in British Columbia.

« Interactions with climate change mitigation and adaptation strategy are assessed.

« Performance risk-hedging impacts the technology investment strategy.
« Sensitivity of results to model formulation is discussed.
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Environmental performance (EP) uncertainties span a number of energy technology options, and pose
planning risk when the energy system is subject to environmental constraints. This paper presents
two approaches to integrating EP uncertainty into the long-term energy planning framework. The
methodologies consider stochastic EP metrics across multiple energy technology options, and produce

a development strategy that hedges against the risk of exceeding environmental targets. Both methods
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are compared within a case study of emission-constrained electricity generation planning in British
Columbia, Canada. The analysis provides important insight into model formulation and the interactions
with concurrent environmental policy uncertainties. EP risk is found to be particularly important in situa-

Risk tions where environmental constraints become increasingly stringent. Model results indicate allocation

Mathematical programming

of a modest risk premium in these situations can provide valuable hedging against EP risk.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Environmental resources are increasingly strained, with
technological transitions in the energy sector sought to provide
relief [1]. For long-term planners, policies that constrain the
environmental impact of energy systems drive the need to rank
technology options based on environmental performance (EP).
Common EP metrics include the rate at which a technology emits
greenhouse gases and other air pollutants [2], or consumes land
and water resources [3,4].

Accurate EP quantification at the technology-level requires
detailed knowledge of the end-use demands, location of imple-
mentation, and the supply chain that enables technology operation
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[5,6]. The large-scale, spatially-distributed nature of modern
energy systems means long-term planners often lack
computational resources to perform analysis at the necessary
resolution. Although lifecycle studies quantify EP uncertainty,
long-term energy scenarios—developed to inform long-term plan-
ners-are typically generated with models operated under deter-
ministic conditions. This approach poses risk when the planner
must secure environmental targets: if technology is developed
under the precondition it provides a certain level of EP, only to find
out later it was overestimated, unforeseen changes to the energy
strategy may be required. Potential measures include pre-mature
retirement of capacity: a fate projected for much of the global
coal-powered electricity generation under climate stabilization
policy [7]. These lock-in effects are costly, and caused by the
lengthy planning period and lifecycle associated with energy
infrastructure, and the resulting inertia technology decisions
impart into the entire energy supply chain [8]. To avoid similar
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energy pathways, opportunities to mitigate EP risk should be
considered within the long-term energy planning framework.

A number of previous studies tackle the issue of risk in
long-term energy system planning. Uncertainties covered span a
number of different components, including: technology costs and
availability [9-14]; technological learning rates [15-17];
renewable resource availability and demand [18]; climate policy
[19-21]; climate sensitivity [22-24]; or a combination thereof
[25-35]. Relatively few studies examine implications of EP risk
from the perspective of long-term energy planning. Technology
efficiency scenarios were explored within a stochastic optimiza-
tion framework [36,37]. Uncertain technology efficiency and emis-
sion factors were also addressed within a multi-criteria analysis
[38]. The issue of natural gas lifecycle emissions uncertainty was
further incorporated within a stochastic planning model [39].
This recent study demonstrates the importance of including uncer-
tain EP into the long-term planning analysis, by quantifying the
potential benefits of upstream emission controls on climate change
mitigation costs.

The current study compares two approaches to integrating EP
uncertainty into the environmentally-constrained long-term
energy planning framework. The methodologies consider stochas-
tic EP metrics across multiple technology options, and produce a
development strategy that hedges against the risk of exceeding
environmental targets. The models are applied to a case study of
emission-constrained electricity generation planning in western
Canada. The analysis provides important insight into model
formulation and the interactions with concurrent environmental
policy uncertainties.

2. Methodology

Mathematical programming is a frequently applied tool for
resource planning analysis that enables representation of physical
and institutional processes as a series of algebraic relationships
and identification of solutions that optimize some overarching
objective. Due to the large number of relationships requiring
representation, linear models are typical in long-range energy
planning studies [40-42]. Any linear programming problem can
be represented in the following standard form:
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The objective of the problem is to find the solution vector x (with
elements x;) that minimizes the function defined in (1a), subject
to the constraints given in (1b) and (1c). For long-term energy plan-
ning, the solution vector represents the capacity and activity of
energy technologies over the time horizon of interest. The objective
is typically economic, and coefficients ¢; therefore transform the
solution vector into expenditures and revenue. The performance
of individual technologies is represented by the technical input-
output coefficients a;;. These parameters determine the amount of
constrained resource b; consumed or provided by decision variable
x;. The subscript i therefore denotes a particular resource constraint
with the subscript j denoting a particular decision variable.
Energy-related constraints include service requirements, fuel
availability and capacity levels. Environmental constraints are also
of increasing concern to energy planning, and are represented
using the input-output coefficients to link development and opera-
tion of technologies to specific environmental impacts. An example
is the inclusion of emission factors and emission constraints to

explore system configurations that ensure an emissions-level that
remains below a desired target.

The linear programming model in its current form is deter-
ministic, and therefore its utility in studying EP uncertainty is lim-
ited. Deterministic scenario analysis is an option; however, this
strategy requires multiple model runs and a skilled analyst to iden-
tify robustness across the solution space [9]. Another method is to
hedge against potential risks through explicit representation of
uncertainties within the original problem framework.

One way of incorporating risk-hedging within the linear pro-
gramming framework is to define a measure of risk R that inflates
the original deterministic objective function [43]. The risk measure
can be parameterized based on the total absolute deviation from the
expected value, obtained based on successive draws from a known
probability space [44]. Risk-hedging against EP uncertainties
requires a different tactic, as these uncertainties concern the techni-
cal input-output coefficients. A similar approach translates the risk
measure to the technical constraints [45,46]. Formulation of the lin-
ear programming problem with uncertain input-output coefficients
can be represented by the following system of equations:
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The mathematical programming model now considers stochastic
technical coefficients a;;x, which are included as N realizations of
the assumed uncertainty distributions. The subscript k denotes
the particular realization of the stochastic coefficients included in
the model. Constraint (2b) contains the risk term @ - R;, which is
added to the technical performance obtained under the expected
value of the input-output coefficients a;;. The risk term inflates
resource usage above the expected value, and essentially provides
a reserve margin. Following Messner et al. [9], the mean positive
deviation from the expected value parameterizes the risk measure
in (2d). The positive value is chosen to reflect that underestimating
technical performance is more risky than overestimation.'
Constraint (2c) computes the deviations obtained under each
realization of the stochastic technical coefficients. The deviations
are broken into positive and negative components r;, and r;, to pre-

serve linearity. The parameter @ is the risk aversion parameter, and
its utility is sensitivity analysis of results, namely to varying deci-
sion-maker attitudes towards technical performance risk. The for-
mulation allows for impact-specific risk aversion parameters to be
specified, enabling preferential weighting of resource constraints.
A potential drawback of the above approach is the abstract nat-
ure of the risk aversion parameter and the expected difficulty in
eliciting an appropriate value from non-technical decision-makers.
These individuals are typically interested in understanding trade-
offs between cost and risk reduction. An alternative approach
based on available budgetary constraints is therefore proposed
here, and is similar to that described in [34]. In this formulation,
a risk premium quantifies the decision-maker’s willingness to

! Arguably, both positive and negative risk should be penalized, as both impact the
strategy costs at the expected (average) parameter values. This type of formulation
can be achieved by defining a non-linear risk measure (e.g., linear-quadratic risk).
Options are discussed in greater detail in [34]. The energy models explored in this
paper implement linear solvers and thus this work is limited to linear programming
solutions.
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