

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

An effort to enhance hydrogen energy share in a compression ignition engine under dual-fuel mode using low temperature combustion strategies

V. Chintala*, K.A. Subramanian

Engines and Unconventional Fuels Laboratory, Centre for Energy Studies, IIT Delhi, New Delhi 110 016, India

HIGHLIGHTS

- H₂ energy share increased from 18% with DDM to 36% with WDM (water injection).
- H₂ energy share improved marginally with retarded injection timing mode (RDM).
- Energy efficiency increased with increasing amount of H2 in dual-fuel engine.
- NO_x emission decreased with water injection and retarded pilot fuel injection.
- HC, CO and smoke emissions increased slightly with low temperature combustion.

ARTICLE INFO

Article history: Received 11 March 2014 Received in revised form 29 January 2015 Accepted 30 January 2015

Keywords: Hydrogen Dual-fuel engine Diesel and B20 pilot fuels Retarded injection timing Water injection

ABSTRACT

A limited hydrogen (H_2) energy share due to knocking is the major hurdle for effective utilization of H_2 in compression ignition (CI) engines under dual-fuel operation. The present study aims at improvement of H_2 energy share in a 7.4 kW direct injection CI engine under dual-fuel mode with two low temperature combustion (LTC) strategies; (i) retarded pilot fuel injection timing and (ii) water injection. Experiments were carried out under conventional strategies of diesel dual-fuel mode (DDM) and B20 dual-fuel mode (BDM); and LTC strategies of retarded injection timing dual-fuel mode (RDM) and water injected dual-fuel mode (WDM). The results explored that the H_2 energy share increased significantly from 18% with conventional DDM to 24, and 36% with RDM, and WDM respectively. The energy efficiency increased with increasing H_2 energy share under dual-fuel operation; however, for a particular energy share of 18% H_2 , it decreased from 34.8% with DDM to 33.7% with BDM, 32.7% with WDM and 29.9% with RDM. At 18% H_2 energy share, oxides of nitrogen emission decreased by 37% with RDM and 32% with WDM as compared to conventional DDM due to reduction of in-cylinder temperature, while it increased slightly about 5% with BDM. It is emerged from the study that water injection technique is the viable option among all other strategies to enhance the H_2 energy share in the engine with a slight penalty of increase in smoke, hydrocarbon, and carbon monoxide emissions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Abundant availability and cost advantage of natural gas (NG) are the predominant motivating factors for the original engine manufacturers (OEMs) to shift transportation vehicles including railroad and marine to NG fueled vehicles. Commercial dual-fuel (diesel-NG) engines from different OEMs such as Cummins (Models: QSK50, KTA38-G2A, and KTA50-G3) [1], Caterpillar (Models: C-10 DFNG, C-12 DFNG, C-15 DFNG, M 46 DF, and M 43

C) [2], Wartsila (Models: 34DF and 50DF) [3], and MAN Diesel (Models: 32/40DF and 51/60DF) [4] are booming up in the real world market. Dual-fuel compression ignition (CI) engines offer a greater benefit of fuel flexibility i.e., the engines could run automatically either under dual-fuel mode (if gaseous fuel NG/hydrogen (H₂)/Biogas/producer gas, etc. is available) or under traditional single fuel mode in absence of the gaseous fuel. The other benefit is that the existing CI engines could easily be converted to dual-fuel engines with a simple retrofit gas injection system. In this direction, GE Transportation is the first OEM, which has developed a retrofit kit for inducting NG into existing diesel locomotive engines for dual-fuel operation [5]. However, in the current

^{*} Corresponding author. Tel.: +91 11 26596458 (0), +91 8595071337 (M). E-mail address: venkatchintala12@gmail.com (V. Chintala).

Abbrevi	ations	IMEP	indicated mean effective pressure, N/m ²
θ	degree crank angle	LHV	Lower heating value, kJ/kg
m	mass flow rate of fluid/species, kg/s	M	molecular weight
а	molar ratio of fuel to air	N	nitrogen atom
Α	area of cylinder, m ²	n	number of moles
ATDC	after top dead centre	N_2	nitrogen
b	molar ratio of fuels	NG	natural gas
В	cylinder bore, m	NO	nitric oxide
B20	diesel (80% volume) biodiesel (20% volume) blend	NO_x	oxides of nitrogen, g/kW h
B_c	clearance between piston and cylinder liner, m	$n_{ m TP}$	total number of moles of products
BDM	B20 dual-fuel mode	Ø	equivalence ratio
BP	brake power, kW	0	oxygen atom
С	molar ratio of water to fuel	O_2	oxygen
C	carbon atom	OEM	original engine manufacturer
CA	crank angle, degrees	р	in-cylinder pressure, N/m ²
CI	compression ignition	Q	heat energy/heat transfer/heat release, kW
CO	carbon monoxide, g/kW h	RDM	retard injection dual-fuel mode
CO_2	carbon dioxide	RPR	rate of pressure rise, bar/degree CA
COV	coefficient of variation,%	R_u	universal gas constant, J/mol-K
C_p	specific heat at constant pressure, kJ/kg-K	SOI	start of injection, degree CA
$\dot{C_v}$	specific heat at constant volume, kJ/kg-K	SWC	specific water consumption, g/kW h
DDM	diesel dual-fuel mode	T	temperature, K
Ε	Internal energy, kW	TDC	top dead centre
ECU	electronic control unit	V	cylinder instantaneous volume, m ³
GE, AVL, MAN diesel name of the companies		$V_{ m crevice}$	crevice volume, m ³
GHG	greenhouse gas	v_{gas}	velocity of gases inside the cylinder, m/s
h	Convective heat transfer coefficient, kW/m ² -K	W	work energy, kW
Н	hydrogen atom	WDM	water injection dual-fuel mode
H_2	hydrogen gas	WTF	water fuel ratio
H_2O	water	X	mole fraction
HC	hydrocarbon emission, g/kW h	γ	specific heat ratio
h_{tl}	crevice top land height, m		

scenario of depletion of fossil fuels (coal, petroleum products, and NG) and stringent emission norms, H₂ is considered as a promising candidate for future energy systems. Moreover, H2 is suggested as a transportation fuel and clean energy source for long term needs to mitigate carbon dioxide (CO₂) emission for tackling global warming and climate changes [6]. The studies by Chandran Govindaraju and Tang revealed the fact that the CO₂ emission annual growth rate in India and China was about 5.7% in a span of eight years [7]. Pongthanaisawan and Sorapipatana found a drastic increase in greenhouse gas (GHG) emissions from 27.5 to 53.9 Mt of CO₂-eq over a period of 17 years from Thailand's transport sector [8]. Utilization of H₂ in CI engines under dual-fuel is one of the options to reduce the GHG emissions drastically. For instance, the experimental investigations carried out by Subramanian and Chintala indicated 46% reduction in CO₂ emission with the use of a small amount of H2 energy share of 20% in a H₂ dual-fuel engine at full load condition [9]. However, a large amount of H₂ substitution in CI engines is a major challenge

to the researchers due to knocking problem. The utilization of various amounts of H2 energy shares under dual-fuel mode was reported in the literature (Table 1). It is observed from the table that the researchers could only achieve a small amount of H₂ substitution (volume/energy basis) in CI engines, in order to avoid knocking combustion, power drop and efficiency losses. However, some researchers achieved the maximum H₂ energy share about 38% with a penalty of energy efficiency [13]. In order to address the issue of limited H₂ substitution in CI engines, several strategies may be adopted. For example, low temperature combustion (LTC) strategies such as retardation of pilot fuel injection timing, reduction of compression ratio, and addition of diluents (nitrogen, helium, CO2, exhaust gas and water). In this context, the present investigation is aimed at enhancement of H₂ energy share in a CI engine with two different LTC strategies; (i) pilot fuel injection timing retardation, (ii) use of water as an additive. The relevant literature on these strategies is briefly illustrated below.

Table 1Literature review on percentage of H₂ fuel substitution in CI engine.

Enchange review on percentage of 112 fact substitution in ci clighte.						
S. no.	Reference	CI engine specifications	H ₂ injection type	Amount of H ₂ fuel (volume/energy) substitution		
1	Saravanan and Nagarajan [10]	Make: Kirloskar, AV1; P = 3.7 kW @ 1500 rpm; CR = 16.5:1	Port injection	7.5 lpm at rated load		
2	Saravanan et al. [11]	– do –	Port injection	12.9% energy share at 100% load		
3	Saravanan and Nagarajan [12]	– do –	Manifold injection	5.5 lpm at full load		
4	Mathur et al. [13]	P = 4 kW @ 1500 rpm; CR = 17:1	Manifold injection	38% energy share at full load		
5	Bose and Maji [14]	Make: Kirloskar; P = 5.2 kW @ 1500 rpm; CR = 17.5:1	Manifold injection	0.15 kg/h at 80% load		
6	Wu H-W and Wu Z-Y [15]	Make: Kubota RK-125; P = 9.2 kW @ 2400 rpm; CR = 18:1	Manifold injection	20% energy share at 60% load		

Download English Version:

https://daneshyari.com/en/article/6687562

Download Persian Version:

https://daneshyari.com/article/6687562

<u>Daneshyari.com</u>