Applied Energy 140 (2015) 275-287

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms

Universidad Politécnica de Cartagena, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Departamento de Ingeniería Térmica y de Fluidos, 30202 Cartagena, Spain

HIGHLIGHTS

• A novel 3D coupled model for flat-plate solar liquid collectors has been developed.

• The predicted thermal efficiency is in agreement with the experimentally obtained.

• The implemented solar load model accounts for high and low wavelength radiation.

• Enhanced asymptotic Nusselt number for mixed convection inside risers is reported.

• Irregular free convection in air gap is due to non-uniform absorber temperature.

ARTICLE INFO

Article history: Received 6 August 2014 Received in revised form 7 November 2014 Accepted 29 November 2014

Keywords: Solar collector CFD simulation Solar radiation Solar energy

ABSTRACT

A 3D numerical model for flat-plate liquid solar collectors has been developed. This model is envisioned for predicting the efficiency curve of the collector, for which the different heat transfer mechanisms involved are simultaneously taken into account: solar radiation absorption, transmission and reflection; natural convection in the air cavity; heat conduction across the tube-absorber welded junction; mixed convection flow in the risers; and heat losses by convection and radiation to the ambient. To ensure the reliability of the model, the heat transfer results inside the risers and in the air cavity were contrasted with well-known experimental correlations available in the open literature.

The thermal efficiency obtained with this numerical model is successfully validated against own experimental data. This heat transfer model is intended for evaluating the impact of different operating conditions and design features on the overall performance of solar collectors, reducing costs in prototype construction and experimentation.

© 2014 Elsevier Ltd. All rights reserved.

Contents

1.	Introd	luction
2.	Nume	rical model
	2.1.	Model geometry 277
	2.2.	Mathematical model
	2.3.	Turbulence model 279
	2.4.	Radiation model
	2.5.	Numerical grid
	2.6.	Boundary conditions
	2.7.	Numerical procedure. 280
3.	Result	ts and discussion
	3.1.	Mixed convection inside the tubes
	3.2.	Natural convection inside the air cavity
	3.3.	Absorber plate temperature field

http://dx.doi.org/10.1016/j.apenergy.2014.11.069 0306-2619/© 2014 Elsevier Ltd. All rights reserved.

AppliedEnergy

^{*} Corresponding author. Tel.: +34 968 32 59 94. *E-mail address: juan.ceron@upct.es* (J.F. Cerón).

Nomenclature

A _A AR	absorber area (m ²) aspect ratio ($AR = H/I$) (-)	Ra _d	Rayleigh number for mixed convection in tubes (a, b, t^{4})
	turbulence model constant (-)		$\left(g\beta q_{w}^{\prime\prime}a^{2}\right)/(\alpha v)$
G	solar irradiance (direct and diffuse) (W m ^{-2})	Ra _H	Rayleigh number for natural convection in cavities
H	air cavity height (m)		$(g\beta(T_h - T_c)H^3)/(\alpha v)$
L	air cavity depth (m)	Re _d	Reynolds number $\rho Ud/\mu$
л МСV	Mixed Convection Validation model (–)	Re_t	turbulent Reynolds number $k^2/v\epsilon$
NCV	Natural Convection Validation model (–)	Ri	Richardson number Gr_d/Re_d^2
Ò	useful power (W)	Z^*	dimensionless distance in z direction $z/(LRePr)$
Ö,	useful power supplied by each tube (W)		
T	temperature (K)	Greek svmb	ols
Tava	averaged temperature $(T_{in} + T_{out})/2$ (K)	α	thermal diffusivity $(m^2 s^{-1})$
T_{h} , T_{c}	air cavity hot and cold wall, respectively (K)	ß	thermal expansion coefficient (K^{-1})
T*	reduced temperature $(T_{avg} - T_{amb})/G$ (W ⁻¹ m ² K)	r Sabe	absorber plate thickness (m)
W	air cavity width (m)	δac	glass cover thickness (m)
c	width of contact zone (absorber-tube) (m)	Sinc	insulation thickness (m)
C _n	specific heat $(I \text{ kg}^{-1} \text{ K}^{-1})$	δ_w	weld thickness (m)
d	internal tube diameter (m)	n	thermal efficiency (–)
d_0	external tube diameter (m)	θ	collector tilt angle (°)
$f_{}f_{1}f_{2}$	damping functions (–)	и и	dynamic molecular viscosity (kg m ⁻¹ s ⁻¹)
g	gravity acceleration (m s ^{-2})	μ.	turbulent molecular viscosity (kg m ⁻¹ s ⁻¹)
h	heat transfer coefficient (W m ^{-2} K ^{-1})	v	kinematic viscosity $(m^2 s^{-1})$
k	thermal conductivity (W $m^{-1} K^{-1}$)	V _t	turbulent kinematic viscosity ($m^2 s^{-1}$)
l _n	wall normal distance (m)	ρ	density (kg m ^{-3})
m	mass flow rate per tube (kg s^{-1})	σ	Stefan–Boltzmann constant (W m $^{-2}$ K $^{-4}$)
p	pressure (Pa)	$\sigma_k, \sigma_\epsilon$	model constants (–)
a''	heat flux on the pipe wall (W m^{-2})	K) C	
q''	top heat losses by convection (W m^{-2})	Ontical para	ameters
q_{rad}''	top heat losses by radiation ($W m^{-2}$)	α	absorptivity (_)
r, ϕ, z	cylindrical coordinates (m)	e E	emissivity (-)
u	wind velocity (m s^{-1})	0	reflectivity (–)
u _i	mean velocity components in the x_i direction (m s ⁻¹)	$\frac{\rho}{\tau}$	transmissivity (-)
x, y, z	Cartesian coordinates (m)	U	cranomosivity ()
Xi	Cartesian space coordinates $(i = 1, 2, 3)$ (m)	Subcerinte	
		abs	absorber plate
Dimensionle	rss numbers	amh	absorber plate
Gra	Grashof number for mixed convection in tubes	crit	critical
u	$\left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \right)$	ovt	external
	$(g\beta q_w^{\alpha} u)/(\kappa v^2)$	ext gc	glass cover
Nul	local Nusselt number on the absorber plate	ы f	fluid
Nu _{lcorr}	local Nusselt number on the absorber plate from	j in	water inlet
	experimental correlation	out	water outlet
Nuz	local Nusselt number on inner wall pipes hd/k	w	wall
Pr	Prandtl number $\mu c_p/k$	**	

	3.4.	Assessment of the solar collector efficiency curve	285
4.	Conclu	usions	286
	Ackno	owledgements	286
	Refere	ences	286

1. Introduction

In 2011 the energy dependence in Europe reached a 53.8% over the total amount of energy consumption [1], and the trend shows an increasing value. The residential sector is responsible for the 24.7% of the final energy consumption. The use of flat-plate solar collectors to produce hot water is an effective means to reduce the energy dependence in this sector, hence contributing to the energy security through the use of renewable energies. In this regard, the EU Member States have committed themselves to achieving a 20% of renewable consumption in Europe's final energy by 2020. According with [2], the contribution of solar water heaters to this target, in the less ambitious scenario, would be 2.4%. The increasing importance of thermal solar collectors has led to significant progresses in their design features, all leading to an increase of the thermal efficiency. Main breakthroughs during the last years include new absorber plate characteristics [3–5]; improvements in the hydraulic or geometric design [6,7]; use of alternative materials [8]; and reduction of the thermal losses [9–11]. The accurate prediction of the thermal efficiency of an improved design is however an open question, Download English Version:

https://daneshyari.com/en/article/6687991

Download Persian Version:

https://daneshyari.com/article/6687991

Daneshyari.com