Applied Energy 139 (2015) 17-29

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases

AppliedEnergy

Cheolsoo Lim^a, Daigon Kim^a, Changkeun Song^b, Jeongsoo Kim^c, Jinseok Han^d, Jun-Seok Cha^{a,*}

^a Global Environment Research Division, National Institute of Environmental Research, 42 Hwankyeong-Ro, Seo-gu, Incheon 404-708, Republic of Korea
^b Air Quality Forecasting Center, National Institute of Environmental Research, 42 Hwankyeong-Ro, Seo-gu, Incheon 404-708, Republic of Korea
^c Transport Pollution Research Center, National Institute of Environmental Research, 42 Hwankyeong-Ro, Seo-gu, Incheon 404-708, Republic of Korea
^d Climate and Air Quality Research Department, National Institute of Environmental Research, 42 Hwankyeong-Ro, Seo-gu, Incheon 404-708, Republic of Korea

HIGHLIGHTS

• One enriched biogas and five natural gases were tested using a CNG vehicle.

• THC, CO, NO_x, and CO₂ were lower, but fuel economy was higher in ETC cycle.

• Toluene represented the highest proportion of the BTEX emissions in both cycles.

• Nanoparticle concentrations were lowest for M91 among six tested fuels.

ARTICLE INFO

Article history: Received 30 May 2014 Received in revised form 24 October 2014 Accepted 26 October 2014

Keywords: Biogas Biomethane CNG Exhaust emissions Transportation fuel

ABSTRACT

This study aimed to investigate the characteristics of exhaust emissions and the fuel economy of a compressed natural gas (CNG) vehicle fueled with biogas and natural gases. A large CNG vehicle currently used as a city bus in Korea was tested on a chassis dynamometer under the European Transient Cycle (ETC) and the National Institute of Environmental Research (NIER) 06 cycles. One CH₄-enriched biogas (97.6% CH₄) and 5 natural gases with different CH₄ contents (81.6–94.0% CH₄) were used as test fuels. Total hydrocarbons (THC), CO, NO_x and CO₂ emissions in the NIER 06 cycle were higher than those in the ETC cycle for all tested fuels, while the fuel economy in the NIER 06 cycle was 43.7-51.5% lower than that in the ETC cycle. Total VOC emissions increased with increasing CH_4 content in the fuel, with toluene being the highest proportion of the BTEX emissions in both the ETC cycle (72-80%) and the NIER 06 cycle (73-78%). Emissions of elemental/organic carbon exhibited a similar trend to that of nanoparticle emissions. Total organic carbon was mainly comprised of organic compounds at 97-99% (ETC cycle) and 95-99% (NIER 06 cycle). Polycyclic aromatic hydrocarbon emissions in the NIER 06 cycle were 133.3-577.8% higher than in the ETC cycle because of incomplete combustion and an increase in unburned fuel in the NIER 06 cycle, which is a low-speed driving mode. Nanoparticle number concentrations were lowest for M91 among the 6 tested fuels; the total number of particles in the NIER 06 cycle was 33.2-123.8% higher than in the ETC cycle.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Climate change and environmental degradation are key issues facing the world today. In particular, global warming due to anthropogenic CO_2 emissions has become a substantial environmental challenge [1–3]. In response, renewable energy recovery and harvesting methods to achieve CO_2 emissions reductions have been extensively studied and adopted, including different types of cycles for heat and energy generation [4,5], renewable energy integration [6–11]. Various countries are endeavoring to develop alternative fuels that can reduce the emissions of greenhouse gases (GHGs) and other air pollutants. The European Union (EU) has set a target for reduction of GHG emissions of at least 35% by using biofuels rather than fossil fuels [12]. In addition, 10% of all fuels consumed in the transportation sector are mandated to be replaced with biofuels by 2020 [13]. In addition, EU policies include a goal of supplying 20% of European energy demand using renewable energy systems (RES) by 2020 [14].

^{*} Corresponding author. Tel.: +82 32 560 7303; fax: +82 32 568 2042. *E-mail address:* js11cha@korea.kr (J.-S. Cha).

Nomen	omenclature					
ATD BTEX	automatic thermal desorber benzene, toluene, ethylbenzene, and xylene	GHG HC	greenhouse gas hydrocarbon			
CH ₄	methane	HFID	heated flame ionization detector			
C_2H_6 C_3H_8	ethane propane	KGC NDIR	Korea Gas Corporation non dispersive infrared			
CHP	combined heat and power	NIER	National Institute of Environmental Research			
CLD CNG	chemiluminescent detector compressed natural gas	NO _x PAH	nitrogen oxides polycyclic aromatic hydrocarbon			
CO	carbon monoxide	PEU	power exchange unit			
CO ₂ DCU	carbon dioxide dyno control unit	RES RTFO	renewable energy systems Renewable Transport Fuel Obligation			
EEPS	Engine Exhaust Particle Sizer	THC	total hydrocarbon			
ETC EU	European Transient Cycle European Union	TOC VOC	total organic carbon volatile organic compound			
10		VOC	volatile organic compound			

Fig. 1. Photograph of biogas production plant using sewage sludge. (a) Digestion storage; (b) biogas transport conduit; and (c) purification facility.

In 2007, the UK government established the Renewable Transport Fuel Obligation (RTFO) to enhance development of biofuels. The biofuel content targets were 3.25% in 2009/2010, 3.5% in 2010/2011, 4% in 2011/2012, and 5% in 2013/2014 [15]. In Sweden, biogas produced by local biogas plants is the most commonly used fuel for transportation [16]. Biogas production is an important strategic initiative in energy supply in China; 38.5 million household-scale digesters and 27,436 large- and medium-scale biogas plants had been built by the end of 2010 [17]. In Germany, the number of biogas plants increased nearly 10-fold during 1996–2008, and the electrical power supplied to the national grid from biogas plants experienced a 6-fold increase during 1999–2008 [18]. In Germany, biogas is mainly used for combined heat and power (CHP) and electricity generation and feeds into the national grid [18].

Biogas is obtained by anaerobic digestion from biomass or biodegradable organic wastes [1,19–20]. It is typically composed of CH₄ (40–75 vol.%) and CO₂ (15–60 vol.%) although its main

composition varies depending on the digestion process and the type and composition of the raw materials [20–22]. Biogas can be used for production of electricity and heat [20,23] and in fuel reforming for hydrogen production. If properly upgraded, it can be a good alternative to petroleum for vehicle fuels [19–21]. There are many ways to upgrade biogas, including thermochemical

Table 1	
Compositions of the biogas and	natural gases used in this study.

Natural	CH ₄ contents	Composition ratio (% mol/mol)			Calorific value
Gases	(%)	C_2H_6	C_3H_8	N ₂	(kcal/Nm ³)
1	81.6 (M81)	11.0	6.8	-	11,200
2	85.7 (M85)	10.0	2.3	2.0	10,400
3	88.0 (M88)	12.0	-	-	10,400
4	91.0 (M91)	6.0	3.0	-	10,400
5	94.0 (M94)	-	6.0	-	10,400
Biogas	97.6 (M97)	-	-	-	9300

Download English Version:

https://daneshyari.com/en/article/6687998

Download Persian Version:

https://daneshyari.com/article/6687998

Daneshyari.com