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a b s t r a c t

A linear stability analysis of the basic uniform flow in a horizontal porous channel with a rectangular cross
section is carried out. The thermal boundary conditions at the impermeable channel walls are: uniform
incoming heat flux at the bottom wall, uniform temperature at the top wall, adiabatic lateral walls.
Thermoconvective instabilities are caused by the incoming heat flux at the bottomwall and by the internal
viscous heating. Linear stability against transverse or longitudinal roll disturbances is investigated either
analytically by a power series formulation and numerically by a fourth order Runge-Kutta method. The
special cases of a negligible effect of viscous dissipation and of a vanishing incoming heat flux at the bottom
wall are discussed. The analysis of these special cases reveals that each possible cause of the convective
rolls, bottom heating and viscous heating, can be the unique cause of the instability under appropriate
conditions. In all the cases examined, transverse rolls form the preferred mode of instability.

� 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

The analysis of the DarcyeB�enard problem in a horizontal fluid
saturated porous layer is a classical issue of the studies of stability
against thermally-induced convection cells. The importance of the
DarcyeB�enard problem and of its several variants stems from the
link to the conceptually similar RayleigheB�enard problem for
a clear fluid. In practice, the interest in the investigation of
convective instabilities in a fluid saturated porous material heated
from below arises from the several applications either with respect
to geophysics, to the hydrology of groundwater, and to the diffusion
of chemical contaminants in the soil. Awide literature exists on this
subject originated from the pioneering papers by Horton, Rogers [1]
and Lapwood [2]. A subsequent extension of this study is Prats
problem [3], where a basic horizontal throughflow in the porous
layer is assumed, instead of the basic rest state considered in the
papers by Horton, Rogers [1] and Lapwood [2]. Comprehensive
reviews of this subject, accounting for the wide literature available
to date, can be found in Nield and Bejan [4], Rees [5] and Tyvand [6].

Interesting studies about the effect of viscous dissipation on
heat transfer and fluid flow in saturated porous media have been

published [7e13]. Some of these investigations are devoted to the
modelling of the viscous dissipation contribution in the local
energy balance [9,12,13]. In particular, Nield [9] discusses the
resolution of a paradox arising when both viscous dissipation and
inertial effects occur. Breugem and Rees [12] carry out a rigorous
volume-averaging procedure for the local balance equations under
the assumption of a non negligible viscous dissipation. Several
studies have been carried out on the effects of the viscous heating
in buoyant flows [7,8,10,11]. For a detailed survey of the wide
literature on viscous dissipation in porous media we refer the
reader to the book by Nield and Bejan [4], as well as to the recent
paper by Nield [13].

Quite recently, the effects of viscous dissipation have been
investigated as the possible cause of convective instabilities in
porous media [14e19]. In these papers, a fluid saturated porous
layer with an infinite horizontal width and a finite thickness is
considered. Different flow models and thermal boundary condi-
tions are investigated. Among the cases examined we cite, hori-
zontal basic flow with a bottom adiabatic boundary and a top
boundary subject to a third kind condition [14] or with bottom and
top adiabatic boundaries [15]. The linear instabilities of the basic
horizontal flow of water next to the density maximum state have
been studied [16] and the form-drag effects have been included
[17]. The Prats problem has been revisited by including both the
contributions of viscous dissipation and pressure work in the local
energy balance [18]. The case of a basic vertical throughflow with
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viscous dissipation has been considered [19], thus extending the
analysis carried out by Homsy and Sherwood [20]. All these
investigations confirmed that the effect of viscous dissipation may
be the sole cause of the convective instabilities. In other words,
linear instabilities induced by the effect of viscous dissipation term
may arise even in the absence of a heat input across the bottom
boundary. These instabilities are in fact thermoconvective insta-
bilities, although generated internally by the viscous heating and
not by an externally impressed temperature gradient.

The aim of the present paper is to develop the above described
investigation of the role played by the effect of viscous dissipation
on the thermoconvective instabilities in porous media. In the
present study, the effect of a lateral confinement due to adiabatic
vertical boundaries is considered. Reference is made to a porous
channel with an isoflux bottom boundary and an isothermal top
boundary. The critical conditions for the onset of either transverse
or longitudinal rolls are determined both analytically by a power
series method and numerically by a fourth order Runge-Kutta
method.

2. Governing equations

We consider the stability of parallel Darcy flow in a rectangular
horizontal channel filled with a fluid saturated porousmedium. The
channel is bounded above and below by two horizontal walls,
separated by a distance H, and laterally by two vertical walls sepa-
rated by a distance 2L; all walls are impermeable (see Fig. 1). The
components of seepage velocity along the x-; y- and z-directions are
denoted by u, v, and w respectively, where the y-axis is vertical and
the z-axis-axis is directed along the channel. The lower boundary
wall y ¼ 0 is subject to a positive uniform heat flux q0, while the
upper boundary wall y ¼ H is supposed to be isothermal with
temperature T0. Furthermore, the lateral walls x ¼ �L are assumed
to be adiabatic. Both the Darcy model and the Boussinesq approxi-
mation are invoked.

The governing mass, momentum and energy equations can be
expressed as
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Eqs. (2)e(4) have been obtained by applying the curl operator to
both sides of Darcy's law in order to remove the explicit depen-
dence on the pressure field. In Eq. (5), the dissipation function is
proportional to the square modulus of the seepage velocity [13].

Fig. 1. Drawing of the porous channel.

Nomenclature

a wave number, Eq. (32)
An, Bn dimensionless coefficients, Eq. (37)
c average heat capacity per unit mass
Cm,n, Dm,n dimensionless coefficients, Eq. (50)
Ec Eckert number, Eq. (9)
g gravitational acceleration
g modulus of the gravitational acceleration
Ge Gebhart number, Eq. (9)
H channel height
k average thermal conductivity
K permeability
L channel half-width
m, n integers
Pe P�eclet number, Eq. (19)
q0 bottom wall heat flux
Ra Rayleigh number, Eq. (9)
<fg; Jfg real part, imaginary part
s L/H, aspect ratio
t dimensionless time, Eq. (9)
T dimensionless temperature, Eq. (9)
T0 top wall temperature
u, v, w dimensionless velocity components, Eq. (9)

U, V, W dimensionless velocity disturbances, Eq. (20)
x, y, z dimensionless Cartesian coordinates, Eq. (9)

Greek symbols
a average thermal diffusivity
b volumetric coefficient of thermal expansion
g dimensionless coefficient, Eq. (33)
3 perturbation parameter, Eq. (20)
h, hm Value of B0, Dm,0

q dimensionless temperature disturbance, Eq. (20)
Q(y), Qm(y) dimensionless functions, Eqs. (32) and (46)
l l1 þ il2, complex exponential growth rate
n kinematic viscosity
s ratio between the volumetric heat capacities of the

fluid saturated porous medium and of the fluid
j dimensionless streamfunction, Eqs. (28) and (42)
J(y), Jm(y) dimensionless functions, Eqs. (32) and (46)
U dimensionless parameter, Eq. (54)

Superscript, subscripts
- dimensional quantity
B basic flow
cr critical value
L longitudinal rolls
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