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a b s t r a c t

This paper is concerned with the linear theory of heat conduction in continua with microtemperatures.
The work is motivated by increasing use of materials which possess thermal variation at a microstructure
level. The theory of plane thermal fields in homogeneous and isotropic bodies is investigated. The first
part of the paper is devoted to the basic boundary value problems of the stationary theory. The
fundamental solutions of the field equations are established and the potentials of single layer and double
layer are introduced. The boundary value problems are reduced to the study of singular integral equa-
tions for which Fredholm’s theorems hold. Existence and uniqueness results are established. The second
part of the paper is devoted to time-dependent problems. First, a solution of Galerkin type of field
equations is established. Then a uniqueness theorem and an instability result are presented. The solution
of Galerkin type is used to investigate the effects of some concentrated heat sources acting in an infinite
medium. The theory is applied to solve the problem of stationary thermal fields in a hollow cylinder.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

The origin of the theories of continua with microstructure goes
back to the papers of Ericksen and Truesdell [1], Mindlin [2],
Eringen and Suhubi [3] and Green and Rivlin [4]. Mindlin [2]
formulated a theory of a continuum which has some properties of
a crystal lattice as a result of inclusion of the idea of a unit cell.
Mindlin begins with the general concept of a continuum, each
material particle of which is a deformable medium. Independently,
a theory of microelastic continuum was published by Eringen and
Suhubi [3], and a theory of multipolar continuum mechanics by
Green and Rivlin [4]. In the theory developed by Mindlin [2], each
microelement is constrained to deform homogeneously. In this
theory, the spatial coordinates x0i of the point X0 of the microele-
ment U are represented in the form x0i ¼ xi þ jikxk, where xi are the
spatial coordinates of the centroid X of U;X0

k and Xk are the material
coordinates of X0 and X, and xk ¼ X0

k � Xk. The functions jik are
called microdeformations. In the mechanical theory of continua
with microstructure the degrees of freedom for each microelement
are twelve: three translations, xi, and nine microdeformations, jik.
The theory of continua with microstructure has been studied

extensively and an account of the basic results can be found in the
works of Truesdell and Noll [5], Kunin [6], Eringen [7] and Mariano
[8]. In [9], Grot established the thermodynamics of continua with
microstructure when the points of a generic microelement have
different temperatures. In this theory the temperature q

0
at the

point X0 of the microelement U is a linear function of the micro-
coordinates xk, of the form q0 ¼ q þ skxk, where q is the temperature
at the centroid X. The vector with the components Tk defined by
Tk ¼ �sk/q is called the microtemperature vector. In the thermo-
mechanical theory of continua with microstructure the unknown
functions are xi,jik,q and Tk. The theory of continua with micro-
temperatures has been investigated in many papers (see, e.g.,
[10e17], and references therein). Recently, a study of heat transfer
in nano-fluids has been presented in [18,19]. The structural stability
for a rigid body with thermal microstructure has been investigated
in [17].

This paper is concerned with the linear theory of heat conduc-
tion in homogeneous and isotropic continua with micro-
temperatures. This work is motivated by increasing use of materials
which possess local temperature variation that stems from a local
change of structure at the microscopic level (see, e.g., [17e19], and
references therein). In the first part of the paper we study the basic
boundary value problems of the stationary theory of plane thermal
fields. In Section 2 we present the basic equations of the two-
dimensional theory of heat conduction in isotropic bodies with
microtemperatures. Section 3 deals with the fundamental solutions

* Corresponding author.
E-mail addresses: iesan@uaic.ro (D. Ieşan), ramon.quintanilla@upc.edu
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of the field equations. In Section 4 we introduce the potentials of
single layer and double layer and reduce the boundary value
problems to singular equations for which the Fredholm’s basic
theorems are valid. Section 5 is concerned with existence and
uniqueness results. In the second part of the paper we consider
time-dependent problems. In Section 6 we establish a solution of
Galerkin type of the field equations. Logarithmic convexity method
is used to derive a uniqueness theorem and an instability result.
Section 7 is concerned with the harmonic propagation of heat in
bodies with microtemperatures. We use the representation estab-
lished in Section 6 to derive the solutions corresponding to
concentrated heat sources acting in an infinite medium. In Section
8 we study the problem of plane thermal fields in a hollow cylinder.
The salient feature of the solution is that the temperature field
contains new terms characterizing the influence of the micro-
temperatures and its value is therefore different from the value
predicted by the classical theory. In Section 9 we have summarized
the original results presented in this paper.

2. Basic equations

In this paper we consider the linear theory of heat conduction in
materials with microtemperatures. Let B be a bounded regular
region of three-dimensional euclidean space, and let vB be the
boundary of B. We assume that the material occupying B is
homogeneous and isotropic.

The body is referred to a fixed system of rectangular cartesian
coordinate frame Oxi (i ¼ 1,2,3). Throughout this paper Latin
subscripts (unless otherwise specified) are understood to range
over the integers (1,2,3), Greek indices have the range (1, 2),
summation over repeated subscripts is implied and subscripts
preceded by a comma denote partial differentiation with respect to
the corresponding cartesian coordinate. We denote by n the
outward unit normal of vB. Letter in boldface stand for tensors of an
order p � 1, and if u has the order p then we write uij.k (p
subscripts) for the components of u in the coordinate frame. If A is
a second-order tensor, then AT denotes its transpose.

In the first part of this paper we consider the stationary theory
of heat conduction. We deal with functions of position having as
their domain of definition the region B. We denote by q the
temperature field over B measured from the constant absolute
temperature T0. Let T be the microtemperature vector field [9]. The
balance of energy can be expressed as

qj;j ¼ �S; (2.1)

where qj is the heat flux vector and S is the heat source. We denote
by qij the first heat flux moment tensor. Let us consider a microel-
ement u of the body. Let x be the center of mass of u and let z be
a generic point of u. We denote by xj and zj the Cartesian coordi-
nates of x and z, respectively, and define Sj by Sj ¼ xj � zj. For each
point z in u, we associate the vector flux q*j . The vector qj is the
surface average of q*j and qij is the surface average of q*i Sj. The
quantities qj and qji are associated to the point x. The balance of first
moment of energy is given by

qji;j þ qi � Qi ¼ �Gi; (2.2)

whereQi is the microheat flux average vector, and Gi is the first heat
source moment vector. The constitutive equations for isotropic and
homogenous bodies are [9]

qj ¼ kqj þ k1Tj; Qi ¼ ðk1 � k2ÞTi þ ðk� k3Þq;i;
qij ¼ �k4Tr;rdij � k5Ti;j � k6Tj;i;

(2.3)

where dij is the Kronecker delta, and k and ks, (s ¼ 1,2,.,6),
are prescribed constants. The Clausius-Duhem inequality implies
that [9]

k � 0; 3k4 þ k5 þ k6 � 0; k6 þ k5 � 0;
k6 � k5 � 0; ðk1 þ T0k3Þ2� 4T0kk2:

(2.4)

The heat flux q and the heat flux moment vector Mj, at regular
points of vB, are defined by

q ¼ qjnj; Mk ¼ qjknj; (2.5)

respectively.
We proceed now to the plane strain problem and for this

purpose stipulate that the region B from here on refers to the
interior of a right cylinder with the open cross-section S. The
coordinate frame is chosen in such a way that the x3-axis is parallel
to the generators of B. We denote by L the boundary of S (Fig. 1).

Let us assume that the heat sources are independent of x3
and that G3 ¼ 0 We consider the two-dimensional theory charac-
terized by

q ¼ qðx1; x2Þ; Ta ¼ Taðx1; x2Þ; T3 ¼ 0; (2.6)

where (x1,x2)˛S. It follows from equation (2.3) that qj,Qk and qrs are
all independent of x3. The constitutive equations become

qa ¼ kqa þ k1Ta; Qa ¼ ðk1 � k2ÞTa þ ðk� k3Þq;a;
qab ¼ �k4Tr;rdab � k5Ta;b � k6Tb;a;

(2.7)

and q3 ¼ 0 Q3 ¼ 0 qa3 ¼ 0, and q33 ¼ �k4Tr,r. The function q33 does
not appear in the remaining equations and it can be found after the
determination of the functions Ta. The equations (2.1) and (2.2)
reduce to

qa;a ¼ �S; qba;b þ qa � Qa ¼ �Ga; (2.8)

on S. It follows from equations (2.7) and (2.8) that the functions q
and Ta satisfy the equations

kDqþ k1Tr;r ¼ �S;
k6DTa þ ðk4 þ k5ÞTr;ra � k2Ta � k3qa ¼ Ga;

(2.9)

on S, where D is the Laplacian. The relations equation (2.5) on the
regular points of vB become

q ¼ qana; Ma ¼ qbanb; (2.10)

on L, where na ¼ cos(nx,xa) and nx is the unit vector of the outward
normal to L.

To the equation (2.9) we can add various boundary conditions.
In the case of the first boundary value problem the boundary
conditions are

q ¼ ~q; Ta ¼ ~Ta on L; (2.11)

x

L
x

0

Fig. 1. The cross-section of the cylinder.
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