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h i g h l i g h t s

� An efficient optimization framework is developed for a realistic geothermal site.
� Optimization under various geological uncertainties leads to different results.
� Permeability of formation where wells are perforated is most sensitive for optimization.
� Water circulation is the primary heat transfer method during production.
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a b s t r a c t

This study applies an efficient optimization technique based on a multivariate adaptive regression spline
(MARS) technique to determine the optimal design and engineering of a potential geothermal production
operation at a prospect near Superstition Mountain in Southern California, USA. The faster MARS-based
statistical model is used as a surrogate for higher-fidelity physical models within the intensive optimiza-
tion process. Its use allows for the exploration of the impacts of specific engineering design parameters in
the context of geologic uncertainty as a means to both understand and maximize profitability of the pro-
duction operation. The MARS model is initially developed from a training dataset generated by a finite set
of computationally complex hydrothermal models applied to the prospect. Its application reveals that the
optimal engineering design variables can differ considerably assuming different choices of hydrothermal
flow properties, which, in turn, indicates the importance of reducing the uncertainty of key geologic prop-
erties. The major uncertainty sources in the natural-system are identified and ranked first by an efficient
MARS-enabled total order sensitivity quantification, which is then used to assist evaluating the effect of
geological uncertainties on optimized results. At the Southern California prospect, this parameter sensi-
tivity analysis suggests that groundwater circulation through high permeable structures, rather than heat
conduction through impermeable granite, is the primary heat transfer method during geothermal extrac-
tion. Reservoir histories simulated using optimal parameters with different constraints are analyzed and
compared to investigate the longevity and maximum profit of the geothermal resources. The comparison
shows that the longevity and profit are very likely to be overestimated by optimizations without appro-
priate constraints on natural conditions. In addition to geothermal energy production, this optimization
approach can also be used to manage other geologic resource operations, such as hydrocarbon production
or CO2 sequestration, under uncertain reservoir conditions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Reinjection of geothermal fluids into geothermal reservoirs has
been demonstrated as an essential practice for increasing the pro-

ductive lifetime of reservoirs and recovery of thermal energy. Re-
injection helps to maintain pressure in the geothermal reservoirs,
slow down production declines in response to pressure drawdown
[1], and, as a result, extent the period of time over which useful
thermal energy can be recovered. The development and manage-
ment of geothermal fields is complicated and expensive and max-
imum potential geothermal energy recovery depends on optimal
well location and operation [2,3]. Simulation-based optimization
methods can address these problems by utilizing production and
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economic models to evolve favorable production designs and strat-
egies through the minimization of one or more quantitative phys-
ical or economic objective functions. Often, these approaches may
require a large number of intensive forward model simulations,
which may quickly become impractical because of their substantial
computational burden. As an alternative, a simpler and approxi-
mate ‘‘surrogate model’’ may be constructed as a means to provide
a faster simulation of the physical system, which may potentially
benefit an optimization or sensitivity-based analysis that would
otherwise requires thousands or more of iterative geothermal pro-
duction simulations. Surrogate or ‘‘response surface’’ models that
relate input variables to output responses are developed through
the use of statistical models that are fitted by training datasets
generated by a finite set of more complex physical simulation
models. Surrogate-based optimization approaches have been
extensively studied and advanced in the past decade in various
application fields [4–11]. Widely used surrogate model techniques
in hydrology include polynomial regression, kriging, radial basis
functions, sparse grid interpolation, support vector machines, and
artificial neural networks [12–14]. Here, we consider the multivar-
iate adaptive regression spline (MARS) technique as developed by
Friedman [15] more than two decades ago and routinely used in
automatic engineering design [16]. MARS is a nonparametric
regression technique that adaptively develops local models in local
regions for flexible regression modeling of high dimensional data.
Each local model is represented by a basis function and an associ-
ated coefficient to be determined. Comparative studies have shown
that MARS is superior to other high dimensional regression meth-
ods (e.g. polynomials) in accuracy and reduction in computational
cost of fitting process [4,17].

Optimal development and management of a geothermal reser-
voir will call for an accurate understanding of reservoir behavior
under both natural and engineered conditions. However, for geo-
thermal optimization problems, there are a variety of uncertainties
associated with the rock properties and structural features of the
formation that may significantly affect the optimized results.
Assessment of these effects on optimal well placement and control
will assist development and management of a geothermal
reservoir.

This study couples a complex hydrothermal simulation model
and a MARS-based surrogate model to investigate the effects of
geological uncertainties (fault size, geological unit permeability)
on optimal well placement and control (re-injection well location,
production rate) in a geothermal prospect near Superstition Moun-
tain in Southern California, USA. Comparative optimization cases
are implemented using prior and posterior probability distribu-
tions of geological parameters, which are adapted from a previous
study on a MARS-based Bayesian inversion [18] to represent max-
imal and reduced geological uncertainties respectively. To evaluate
the influence of uncertainties of individual geological properties on
optimal results, additional optimization experiments are designed

and conducted by sequentially fixing the uncertain geological
parameters during optimizing process.

2. MARS-based optimization framework

The MARS-based optimization framework consists of several
steps that include: Conceptual design and parametric definition
of the hydrothermal flow system of interest, including ranges in
uncertain geological properties and operational parameters to be
optimized; Development of physical hydrothermal flow models
for this system; Construction and validation of a MARS surrogate
model through the generation and processing of training data
drawn from these steps; and Application of the MARS surrogate
models in the optimization process to minimize objective func-
tions. As illustrated in Fig. 1, these steps involve the MARS-based
optimization proceeds as follows:

1. Conceptual Design of the Surrogate: The conceptual model
design leads to a series of M uncertain parameters with associ-
ated ranges or probability distribution functions (PDFs), includ-
ing unknown geological properties and operational parameters
to be included in surrogate model. Using a Latin Hypercube (LH)
method [19], these are sampled N times to yield a set of N train-
ing sample vectors. In this study all parameters are assumed to
have a uniform-type of PDF.

2. Training Data Generation: These N sample vectors, each with M
components, are used as inputs to develop N hydrothermal
flow models for the system. Here, we utilize the NUFT
(Nonisothermal Unsaturated–saturated Flow and Transport)
model [20] that considers both initialization (run 1 million year
to steady state) and production simulation (run to 1000 years of
extraction from the initial natural state). The results of each
simulation are used to construct individual model responses,
in this case, representing an evaluation of the objective function
to be minimized in the optimization process.

3. MARS Model Development: In MARS algorithm, local models are
adaptively developed in local regions for flexible regression mod-
eling of high dimensional data. The model can be written as
f̂ ðxÞ ¼

Pk
i¼1aiBiðxÞ, where x 2 Rm, and Rm is the m-dimensional

space. k and ai are the number and coefficients of associated basis
functions BiðxÞ ¼

QJi
j¼1½Sji � ðxvðj;iÞ � tjiÞ�þ; i ¼ 1;2;3; . . ., where

ð�Þþ ¼maxð0; �Þ, Ji is the interaction order of basis Bi, that is, the
number of variables included in the basis function, Sji = ±1 is
the sign indicators, v(j,i) is the index of the design variable x
which is split on knots tji. ai and Bi(x) can evaluated after the num-
ber of locations of knots is adaptively chosen based on the
response function changes. The N pairs of sample input vector
versus response (objective function) are used to construct a
MARS model, as shown in shaded portion of Fig. 1. A MARS model
that is fitted well does not necessarily mean it is good for predic-

Fig. 1. Schematic diagram of the MARS-based optimization framework. The gray shaded part shows that MARS models are trained by dataset generated from the physical
models.
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