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h i g h l i g h t s

�We propose a model for forecasting cooling and electricity load demand.
� The model takes the advantage of both time series and regression methods.
� The model is able to accurately forecast the load demands of the CCHP system.
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a b s t r a c t

The objective of this paper is to extend a statistical approach to effectively provide look-ahead forecasts
for cooling and electricity demand load. Our proposed model is a generalized form of a Cochrane–Orcutt
estimation technique that combines a multiple linear regression model and a seasonal autoregressive
moving average model. The proposed model is adaptive so that it updates forecast values every time that
new information on cooling and electricity load is received. Therefore, the model can simultaneously take
advantage of two statistical methods, time series, and linear regression in an adaptive way. The effective-
ness of the proposed forecast model is shown through a use case. The example utilizes the proposed
approach for economic dispatching of a combined cooling, heating and power (CCHP) plant at the Univer-
sity of California, Irvine. The results reveal the effectiveness of the proposed forecast model.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

U.S. households and commercial buildings consume approxi-
mately 40% of total energy use and account for 72% of total U.S.
electricity consumption [1]. Commercial building energy demand,
in particular, doubled between 1980 and 2000 and is predicted
to increase 50% over the next 15 years [2]. As a result, energy
demand management has emerged as a key policy for both public
and private organizations. CCHP systems can significantly contrib-
ute to reducing buildings energy use, curtail pollutant and carbon
emission, and help to decrease risks of blackouts and brownouts in
the utility grid [3,4]. CCHP technology integrates processes of
production and simultaneous use of cooling, heating, and power
at a single site. However, since most commercial and industrial
electrical loads are highly dynamic and typically not synchronized
with local heating and cooling demands, advanced control strate-
gies will be imperative to economic dispatch of CCHP resources.

A wide range of optimal control strategies has been proposed to
improve the CCHP operation based on different objectives includ-
ing power flow, capacity, operation, energy-use and environmental
considerations [5–12]. A common element in almost all optimal
control strategies is to have an accurate estimation of cooling,
heating, and electricity load demands. Some researchers assume
that load demands are known and available over a specific period
[8,9]. However, cooling and electricity demands are typically sto-
chastic and unknown mainly because of the complex interaction
s between plant facilities and equipment, e.g. chillers and turbines
yields. Liu et al. [8] point out that in practical applications, the
exact future load profile does not exist; and forecasting methods
should be taken into consideration by researchers. Therefore, a
forecasting mechanism should be applied by researchers to find
the future values of load demands.

A number of researchers employ building simulation platform
to generate building load demand based on its physical character-
istics and other dynamic input variables such as occupancy,
weather, and time information. The cooling and electricity load
demands are outputs of running the simulation and are then fed
into the optimization model [10–12]. However, the quality of
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results highly depends on quality of the simulation models and
their inputs. In addition, for any CCHP optimization, a detailed
building simulation model needs to be accordingly built and run
repeatedly. Another way to deal with this problem is to consider
uncertainty in CCHP optimization model. Hu and Cho [12] for
instance, propose an optimization model with some probabilistic
constraints to guarantee that the model is reliable to satisfy the
stochastic load demand. They assume load demands are indepen-
dent and follow normal distributions in which 95% of the area is
within the range of ±20% of the average load demands. Another
approach to this problem is to develop a forecasting model and
embed it into the optimization model. This is the main motivation
of this work. In this paper, Cochrane–Orcutt estimation technique
is used as an effective linear model to provide look-ahead forecasts
for cooling and electricity demand load. It simultaneously fits a
regression model and a time series to the data while maintaining
least square estimate (LSE) conditions. In addition, the forecast val-
ues are modified when a new data is received from the real system.
The proposed model is currently working as a part of an integrated
optimal dispatch for CCHP plant at the University of California,
Irvine and providing accurate forecasts for the entire campus
cooling and electricity load demand.

2. Background study

In most real cases, cooling and electricity load demands are
highly dynamic oscillating within a wide range of values during
course of a day. This is mainly because several physically explicit
or latent factors can instantaneously influence cooling and electric-
ity demand patterns. These factors can be any one of the following
types: (i) Static factors that are usually set at the design stage and
only change due to aging wear and tear. Building characteristics,

CCHP components, chiller types and generator nominal capacities
are examples of such factors; (ii) Environmental variables extrinsic
to the building, such as climate and weather data; (iii) operational
variables, e.g. cooling/heating set point values, lighting, time sche-
dule to operate various equipment and system components within
plant or building; and (iv) uncontrollable dynamical variables, such
as number of occupants at any time, noise due to structural varia-
tions etc. It is ideal to know all these factors and their impacts on
energy dynamics in order to optimally forecast and control cooling
and electricity demands for single building or a cluster of buildings.
However, a complete forecast model is not practically attainable
due to unknown significant dynamical variables, lack of tools to
measure their effects, or that some of these variables are uncon-
trollable. Therefore, a wide range of different methods has been
proposed to model and forecast load dynamics. In overall, these
methods can be categorized into three general approaches.

In the first approach, a linear or nonlinear statistical model is
used to explain the variability of response (load or energy dynam-
ics) over time. The most popular example of such statistical models
is Box and Jenkins time series paradigm where load demands are
estimated based upon a linear combination of their past values
[13,14]. There are a large family of different models in this category
that can deal with many special cases including seasonality, non-
stationary, and non-homogeneity of variances (see e.g. [15,16]).
The major drawback of such models is that the future values are
typically forecasted based upon the past and present values of
cooling and electricity load demands without considering any
exogenous factors in the model. Another example of statistical
approach is using regression models (metamodel) where the vari-
ability within response is modeled via a number of exogenous fac-
tors [17–21]. The major problem of such models is that they often
ignore the complex interactions between exogenous factors, which

Nomenclature

CCHP combined cooling, heating and power
LSE least square estimate
ARX autoregressive with exogenous variable
ARMAX autoregressive moving average with exogenous variable
ARMA autoregressive moving average
AI artificial intelligence
ANN artificial neural network
R2 coefficient of determination
R2

adj adjusted coefficient of determination
GT gas turbine
ST steam turbine
TES thermal energy storage
HRSG heat recovery steam generator
COP coefficient of performance
Wk

CHC cooling power generated by the kth chiller (kW)
Wk

CHW power consumed by the kth chiller to cooling power
(kW)

COPk coefficient of performance for the kth chiller
WCHW total power consumed by chillers to generate total cool-

ing power of the campus (kW)
Qcooling cooling demand from the campus (kW)
TCHRw returned water temperature to chillers (K)
TCHSw supply water temperature from chillers (K)
_mchw chilled water mass flow rate (kg/s)

cw specific heat capacity of water (kJ/kg K)
Welectricity electricity demand from the campus (kW)
Wgrid power purchased from grid (kW)
WGT power produced by gas turbine (kW)
WST power produced by steam turbine (kW)

Symbols
W electricity power
Q cooling power
_m mass flow

T temperature
e random error term
y dependent/output variable
x independent/input variable
b coefficients of input
U autoregressive operator
H moving average operator
B backward operator

Subscripts
T time (h)
J index for input variables
CHC cooling generated by chiller
CHW power consumed by chiller
W water
Chw chilled water
CHRw water returned to chiller
CHSw water supplied by chiller
GT gas turbine
ST steam turbine
grid power grid

Superscripts
k chiller number
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