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A well-known problem in thermo-hydrodynamics involves the sudden release of the explosion energy,
concentrated in a finite volume, to surroundings with uniform density. However, only similarity solutions
which have no detailed information on the earlier behavior of the fire-ball are available on this problem.
In this study, we obtain a set of analytical solutions for the time dependent radius of an expanding fire-
ball after explosives detonation by solving continuity, Euler and energy equations using a “polytrope”
assumption for the fire-ball center. Subsequent spherical shock waves that develop from the fire-ball are
obtained using the Kirkwood—Bethe hypothesis with Tait’s equation of state for water and the ideal gas

g?ggﬁin equation of state for air. The pressure waves emanating from the oscillating bubble in underwater, which
Fire-ball has a notably different time scale from the shock wave generation, are obtained using the Rayleigh
Spherical shock wave equation. The calculated results for the period and the maximum radius of bubble that resulted from the
Underwater fire-ball and the pressure wave from the oscillating bubble in underwater are similar to the observed
Air medium ones (Swift and Decius, 1946: Yennie and Arons, 1946). The calculated peak pressures as a function of
TNT shock radius in air medium were comparable to those observed (Swisdak, 1975).

© 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

With the detonation of a solid explosive, enormous amounts of
energy are released and extremely high pressure develops while
the solid density remains unchanged. After the detonation process
terminates, the high pressure material expands rapidly and
accompanied by a strong shock wave, known as ablast wave. Strong
explosion accompanying shock waves in a homogeneous media has
been thoroughly studied [1]. The distributions of pressure, density
and gas velocity with respect to the shock radius were determined
to solve the continuity and Euler equations with introducing
a similarity variable by Sedov [1], which can also be found in
Landau and Lifshitz [2]. The radius and velocity of the shock wave
front were obtained by dimensional analysis [3]. However, the
similarity solutions obtained in previous works do not adequately
cover the region very near to the explosion source, i.e., they provide
the velocity of the fire-ball only later time after the explosion.

Recently, numerical studies analyzing strong blast wave have
been performed by several authors [4,5]. Especially, numerical
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simulation of underwater explosion was tried by various methods
such as arbitrary Lagrangian—Eulerian formulation [6], indirect
boundary element method [7], time-integration boundary-integral
method [8] and adaptive solution technique [9]. In their study, the
surrounding fluid was treated as either incompressible [4,7,8] or
compressible [4,6,9] medium. However, the gas behavior inside the
bubble was obtained by the relation of PV" = constant. As is well
known, the index n can range in the interval from 1 (isothermal) to
the ratio of the specific heats y (adiabatic) in polytropic approxi-
mation which assumes the uniform pressure and temperature for
the gas inside the bubble intrinsically. Furthermore, the earlier
stage of the expansion process which provides crucial information
to obtain the subsequent shock propagation has never been treated
properly by the numerical simulation [4,5]. In fact, initial radius and
the corresponding pressure for the motion of the bubble evolved
from the detonation products were chosen to match the observed
bubble period [4]. On the other hand, with R, and P, which were
taken as the initial conditions for the expansion of detonation
products, the Rayleigh equation yields extremely large bubble
period and the maximum radius, and consequently considerably
large value in the shock strength.

The motion of the bubble evolved from the detonation products
underwater is characterized by two different time scales having
two orders of magnitude between the expansion of the detonation
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products and the pulsating of bubble [10]. It is really hard task to
treat the underwater explosions involving several complex physical
processes.

In this study, we obtained a set of analytical solutions for the
time dependent radius of an expanding fire-ball after detonation of
explosives by solving for the continuity, Euler and energy equations
with a “polytrope” assumption at the fire-ball center. Spherical
shock waves that developed from the rapidly expanding fire-ball
were obtained using the Kirkwood—Bethe hypothesis [11] with
Tait’s equation of state for water and with the ideal gas equation of
state for air medium. Subsequent pressure waves emanating from
the oscillating bubble in underwater are obtained using the Ray-
leigh equation [12]. In an air environment, the Rayleigh equation,
neglecting the pressure term, was used to calculate the behavior of
the fire-ball after rapid expansion.

2. Continuity and the Euler equation and their solutions

The equation for continuity and the Euler equation for an irro-
tational fluid are given as
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Here u is the fluid velocity. With decomposition of the gas
density in spherical symmetry as p = p,(t) + p,(r, t) the continuity
equation becomes

[%’erovﬂ} +%+prv-7 =0 (3)
where the notation of the total derivative used here is
D/D = 8/dt + ud/or.

The rate of change of the density of a material particle can be
represented by the rate of volume expansion of that particle in the
limit [13] V—0, or

vu = lim (V/V) = 3R/R (4)

With this result, one can have radial dependent velocity profile
inside the fire-ball from the continuity equation.

u = Rr/R (5)

This linear velocity means that the fire-ball expands homo-
logously [14]. In other words, every mass point during expansion
may be traced back to a single point, the center of the fire-ball. With
this velocity profile, one can obtain the following quadratic density
profile. The fully detailed derivation can be found in Kwak and Yang
[15] and Kwak and Jun [16].
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where“a” and “b” are constants related to the mass of the fire-ball.
Substituting Eqgs. (5) and (6) into the Euler equation given in
Eq. (2), we have the following pressure profile inside the fire-ball:
brz ar*\ R
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At the center of the fire-ball, the above equation with
a boundary condition, P = 0 at r = R becomes:
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To determine the “a” and “b” in Eq. (6), we need an equation of
state for the gas inside the fire-ball. Excluding the viscous dissi-
pation term, the energy equation with internal and enthalpy
representation can be written as [15,17]
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where C, andC, are the specific heats at constant-volume and at
constant-pressure, respectively, and ¢ is the heat flux. Elimi-
natingv- q from Eqgs. (9) and (10) give us

DT DT -~ DP
where Rg is the gas constant. At the center of the fire-ball, the above
equation reduces to
0Ty ., R 0Py
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which yields the following ideal gas relation at the center of the
fire-ball.

PoRg (12)

PoR3/T, = const. (13)

whereP, and T, are the gas pressure and temperature, respectively,
at the fire-ball center.
The adiabacity condition at the fire-ball center can be written as:

Py = kpy’ (14)

wherevyr is the specific heat ratio for the detonation products of the
explosives and « is some constant.

The assumption of the polytrope at the center is equivalent to
the assumption that the center is neither a heat source nor a heat
sink, i.e., V-q = O at the center. When the velocity, density and
pressure profiles are obtained, and are given in Egs. (5—7), we can
solve the energy equation with the boundary condition given in
Eq. (14) to obtain the following results.
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where M is the mass of the explosive.

Note that even though the temperature at the surface of the fire-
ball T; is included in Eq. (17), it cannot be calculated using the ideal
gas law because the gas pressure at the surface of the fire-ball
becomes null from Eq. (18), which indicates that the properties at
the surface of the fire-ball cannot be defined. In fact, the pressure,
density and gas velocity distributions behind the shock front may
be obtained from Sedov analysis [1].
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