
GARCH-based put option valuation to maximize benefit of wind
investors

Javier Contreras a, Yeny E. Rodríguez b,⇑
a University of Castilla–La Mancha, E.T.S. de Ingenieros Industriales, 13071 Ciudad Real, Spain
b ICESI University, Financial and Accounting Department, Cali, Colombia

h i g h l i g h t s

�We propose a methodology of put options pricing for users investing in wind projects.
� ARIMA–GARCH models for forecasting electricity prices are used to capture second-order effects.
� Pricing derivatives considers conditional heteroskedasticity and martingale behavior.
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a b s t r a c t

A method based on Empirical Martingale Simulation (EMS) is presented to evaluate investments in wind
energy. Risk-neutral prices are calculated, where electricity market prices are modeled using an ARIMA–
GARCH method which shows conditional heteroskedasticity. The values of the put options are calculated
a week ahead and it is observed that wind producers that invest in the options market can hedge against
price risk and can also maximize their benefits. The use of Monte Carlo simulation with the EMS method
in periods of high volatility is especially useful for investors facing price volatilities in order to improve
their returns. The model is applied to the Colombian electricity market.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decade many countries have started the process of
deregulation of their electrical systems, in particular transmission
and distribution grids. The process has been accompanied by a rap-
idly growing presence of small generators of various technologies,
especially renewable energy sources [1], with goals such as the
reduction of greenhouse gas emissions and reliability [2]. Efficient
integration of distributed generation requires network innova-
tions, new communication technologies at all levels [3–6],
implementation of technologies that involve dispatch with
intermittent sources [7–9]. These activities require their own
financial evaluation before implementation [10].

In this way, recent research has been focused on renewable
sources integration in pool-based electricity markets in order to
identify the optimal placement and size of renewable resource

investments [11–14], or to assess the future impact of renewable
generation [15].

In this context the users should make better decisions suited to
their circumstances, therefore, it is relevant to study risk manage-
ment decisions faced by them. Several studies have been con-
ducted to define hedging instruments for users with distributed
generation, either by replacing the fuel typically used for genera-
tion with renewable sources [16], or by reducing or shifting
consumption [17,18], in which case energy storage devices may
contribute viably [19].

1.1. Literature review: price forecasting and put options

The main characteristics of energy prices are: seasonal patterns,
peak rates, mean reversion, price-dependent volatilities and non-
stationarity in the long term [20]. Pricing models have been devel-
oped to capture these characteristics, for which different analysis
techniques have been used.

Analysis techniques that have been used to model price series
are: Markov regime changes [21–24], GARCH models [25,26],
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neural networks [27], and stochastic processes [28–30]. In particu-
lar, GARCH models have been instrumental in the valuation of
derivatives. These types of models were initially proposed by Bol-
lerslev [31] and their main characteristic is the existence of condi-
tional heteroskedasticity, which means that the structure of the
conditional variance depends not only on past errors but on past
conditional variances.

The main goal of having these price models is the valuation of
financial instruments for hedging against price risk. A particular
instrument for hedging is the Financial Option, which is one of
the most widely used derivative contract types. This financial
option gives the holder the right, but not the obligation, to buy
(call) or sell (put) an underlying asset at a fixed price at some time
in the future.

In order to find the fair price of the financial option, Black and
Scholes [32] derived an equation for option pricing based on the
principle of no arbitrage. This principle implies the existence of a
martingale measure equivalent to the actual probability measure,
under which the asset price discounted at the risk-free interest rate
is a martingale. A martingale is a stochastic process without a
trend. One consequence is that its expected value is constant. This
probability measure is also known as ‘‘risk-neutral probability’’.

The Black–Scholes equation [32] was developed under the
assumption that fluctuations in underlying asset prices are
described by an Itô process, and that volatility is constant. These
two assumptions have been relaxed in different studies. Some
studies have suggested that the asset instantaneous changes follow
an ARMA process; option pricing models have been applied, except
that the constant volatility is dependent on the AR and MA param-
eters [33]. In the latter work, the authors find that if the sum of the
AR and MA parameters is zero, option pricing using the ARMA
model provides the same results as the Black–Scholes model. They
conclude that using the Black–Scholes formula to price the option
is correct even if the stock price follows an ARMA process. Other-
wise, if the sum of the AR and MA parameters is greater than zero
(or less than zero), option pricing using Black Scholes undervalues
(overvalues) ARMA option prices.

Stochastic volatility has been modeled in continuous and
discrete time [34–36]. Continuous models have assumed the

existence of correlation of the stochastic processes involved
(asset price and volatility) [35], as well as risk neutrality. Discrete
models assume that the variance follows a GARCH model. Under
this assumption the authors derive a closed-form expression to
calculate the value of European options in Heston and Nandi
[36]. This theoretical development has generated conflicting
results [37,38]. Given these controversies, most researchers have
opted for Monte Carlo simulation in the valuation of derivatives.
A weakness of this tool is that the simulated price paths do not
have the martingale property. Due to this difficulty, in Duan and
Simonato [39] they have made a simple correction to the standard
procedure used in Monte Carlo simulation, which ensures that the
simulated price trajectories are martingales in an empirical sense.
This correction is called Empirical Martingale Simulation (EMS).
The authors have applied their proposal for European and Asian
call options using both the Black and Scholes and GARCH option
pricing frameworks. The consistency of the estimator of the
option price using the EMS method has also been tested [40].
The authors define the EMS correction as a recursive scheme
because the payment of the option or the dynamics of the
underlying asset price can be path-dependent, so the simulation
must be carried out recursively until the expiration of the option.

Huang [41] has extended the EMS procedure from a risk-neutral
context to a dynamic measure, P, which he calls P-Empirical Mar-
tingale Simulation (EMPS). The author proposes to generate a pro-
cess of change of measure and the objective is to ensure that the
simulated processes of the underlying asset price and the values
of the change of measure are both empirical P-martingales. The
author explains that the EMPS method is more lexile and ;[42]
under risk neutrality, especially when an explicit expression of
the risk-neutral model is not readily available.

Based on the EMPS method [41,42] have conducted an empiri-
cal study to investigate the performance of GARCH models in the
context of option pricing. These authors outlined the procedure
for calculating option prices under GARCH with: (i) adjustment
of the GARCH model with historical prices, (ii) transformation of
the dynamics from a GARCH model to a risk-neutral GARCH, and
(iii) calculation of the option prices with Monte Carlo under a
risk-neutral GARCH model.

Nomenclature

A. Parameters
/i autoregressive parameter i
Ui seasonal autoregressive parameter i
hi moving average parameter i
Hi seasonal moving average parameter i
h height at which wind speed is estimated in m
h0 reference height in m
a parameter for different types of soil roughness
k shape parameter of the Weibull distribution
c scale parameter of the Weibull distribution
q air density in kg/m3

Area surface perpendicular to the wind flow in m2

r risk-free rate in %
T maturity date of option set in 7 days
a annual discount rate in %
n project lifetime of a wind project in years
V0 reference wind speed at height h0 in m/s
Rate regulated fixed fee to be paid by the wind producer in €/

MWh
CE energy produced used for consumption of user in kWh
d option price in €/MWh
SE energy produced injected into the network in kWh

B. Variables
Pwb electricity price for week w and block b in €/MWh
K average wind cost in €/kWh
Pt electricity price at time t in €/MWh
et error at time t
rt volatility estimated by GARCH at time t
error forecast error
OMC operation and maintenance cost in €
AC annual cost of a wind project in €
I level of investment of a wind project in €
vt wind speed at time t in m/s
V(h) wind speed at height h in m/s
EGhmn energy generated in hour h of month m for each series n

in kWh
vhmn wind speed at hour h of month m and series n in m/s
ETy total energy produced in year y in kWh
NDm number of days of month m
EGhm average energy produced in hour h of month m in kWh

260 J. Contreras, Y.E. Rodríguez / Applied Energy 136 (2014) 259–268



Download English Version:

https://daneshyari.com/en/article/6688709

Download Persian Version:

https://daneshyari.com/article/6688709

Daneshyari.com

https://daneshyari.com/en/article/6688709
https://daneshyari.com/article/6688709
https://daneshyari.com

