Applied Energy 136 (2014) 465-479

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Enhanced heat release analysis for advanced multi-mode combustion engine experiments

AppliedEnergy

Elliott A. Ortiz-Soto^{a,*}, George A. Lavoie^a, Jason B. Martz^a, Margaret S. Wooldridge^{a,b}, Dennis N. Assanis^c

^a Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA

^b Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA

^c Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794-2300, USA

HIGHLIGHTS

• Developed analytical methods to characterize advanced multi-mode combustion.

- Integrated methods into Advanced Combustion Engine Heat Release Analysis (ACE-HRA).
- ACE-HRA was assessed by comparison with high fidelity SACI engine simulations.
- Quantified the sensitivity of ACE-HRA estimates to key experimental input data.

• ACE-HRA used to infer physical behavior in representative SACI engine experiments.

ARTICLE INFO

Article history: Received 5 May 2014 Received in revised form 9 August 2014 Accepted 14 September 2014

Keywords:

Advanced internal combustion engines Experimental heat release analysis HCCI, SACI, SI Heat transfer Flame propagation Auto ignition

ABSTRACT

Advanced combustion strategies, such as Homogeneous-Charge Compression-Ignition (HCCI) and Spark-Assisted HCCI or Spark-Assisted Compression-Ignition (SACI) hold considerable promise for improving engine efficiencies while maintaining low pollutant emissions, yet few models exist that accurately include the important chemical and physical mechanisms of these advanced combustion strategies. Further, experimental data from advanced combustion engine experiments are not well represented using conventional spark ignited analytical tools. This paper presents new methods for advanced combustion analysis that integrate previous analytical methods with new algorithms to capture the unique features of advanced combustion strategies like SACI.

The new analytical capabilities were incorporated into a program which was designated the Advanced Combustion Engine Heat Release Analysis (ACE-HRA) tool. The models developed and applied in ACE-HRA were assessed by comparison with high fidelity engine simulations of HCCI and SACI. The high fidelity simulations provided data sets with detailed predictions of heat release rates, temperatures, auto-ignition timing, flame speeds and other key parameters not resolved or measured in engine experiments. The sensitivity of ACE-HRA estimates to model input data was quantified for important engine performance parameters. The sensitivity analysis showed that estimates for in-cylinder masses have the largest overall impact on the ACE-HRA results (e.g. ±10% variation led to changes on the order of ±5–10% in peak rate of heat release, burn duration and peak temperature). Noticeable differences in peak heat release rate and ringing intensity were also observed when comparing cycle-by-cycle analysis against ensemble-average analysis, which has implications on how the results are interpreted and applied in modeling work.

After validating ACE-HRA with the high-fidelity simulations, ACE-HRA was applied to interpret the data from a recent experimental study of SACI combustion. The ACE-HRA methods were used to infer the effects of flame propagation on in-cylinder gradients and cycle-to-cycle variability, and to provide quantitative estimates for the associated changes in the end-gas burn rate. The trends observed, such as the decrease in burn rate for later auto-ignition and higher burn fraction by flame, provide more in-depth understand-ing of SACI combustion and demonstrate the insight that can be revealed by the new ACE-HRA tool.

© 2014 Elsevier Ltd. All rights reserved.

E-mail address: eortizso@umich.edu (E.A. Ortiz-Soto).

^{*} Corresponding author at: University of Michigan, Department of Mechanical Engineering, 1231 Beal Ave., Ann Arbor, MI 48109-2133, USA. Tel.: +1 734 764 2694; fax: +1 734 647 3170.

Nomenclature

Abbreviations h specific enthalpy			specific enthalpy
A/BTC	after/before top dead center	h^{HT}	convection heat transfer coefficient
ACE	advanced combustion engine	m	mass
AI	auto-ignition	m^k	mass of species k
BC	bottom dead center	t	time
CA	crank-angle		burn fraction
CFD	computational fluid dynamics	$\frac{x_b}{A}$	combustion chamber surface area
CFM	coherent flamelet model	B	cylinder bore
COV	coefficient of variability	CA(X)	crank-angle at X% burn (e.g. CA50)
	compression ratio		crank-angle at X% EG burn (e.g. EG50)
CR		EG(X)	
EG	end-gas	Н	total enthalpy
EGR	exhaust gas recirculation	L	characteristic heat transfer length
EOC	end of combustion	P O ^{HR}	pressure
EVC	exhaust valve closing	Q^{HK} Q^{HT}	heat release
EVO	exhaust valve opening		heat transfer
FFVA	fully-flexible valve actuation	Q_{LHV}	lower heating value
HCCI	homogeneous charge compression ignition	R	gas constant
HR	heat release	$\frac{S_L}{S_p}$	laminar flame speed
HT	heat transfer	S_p	mean piston speed
IMEP	indicated mean effective pressure	Т	temperature
IMPR	intake manifold pressure referencing	U	total internal energy
IVC	intake valve closing	V	combustion chamber volume
IVO	intake valve opening	Y^k	mass fraction of species k
MMC	multi-mode combustion		
MZ	multi-zone	Subscripts/superscripts	
NTC	negative temperature coefficient	air	air-related quantity
NVO	negative valve overlap	b	post-flame zone
PIPR	polytropic index pressure referencing	cyl	in-cylinder quantity
R.I.	ringing intensity	d	displacement
RGF	residual gas fraction	e-EGR	external EGR
RoHR	rate of heat release	exh	exhaust-based quantity
SA	spark advance	fuel	fuel-related quantity
SACI	spark-assisted compression ignition	i-EGR	internal EGR
SI	spark ignition	peak/max peak or maximum value	
SOC	start of combustion	prod	combustion products
TC	top dead center	r	reference value
	top acaa conter	reac	unburned reactants
Definitio	nc	tot	total-based quantity
5			1 5
α_{HT}	heat transfer energy closure factor specific heat ratio	u AI	end-gas zone end-gas auto-ignition quantity
γ	•		
η_{comb}	combustion efficiency	EG	end-gas quantity
θ	crank-angle	FL	flame-based quantity
ĸ	curvature	IGN	value at auto-ignition timing
Φ	fuel/air equivalence ratio	SPK	value at spark timing
c_v	specific heat at constant volume		

1. Introduction

Advanced combustion strategies, such as Homogeneous-Charge Compression-Ignition (HCCI) and Spark-Assisted HCCI (SA-HCCI) or Spark-Assisted Compression-Ignition (SACI), are important methods to improve internal combustion engine efficiency and emissions. HCCI combustion relies on chemically controlled auto-ignition [1–4], and can be operated with much leaner mixtures, higher compression ratios and un-throttled, considerably increasing thermodynamic efficiency compared to conventional spark-ignition (SI). However, the HCCI operating range is limited by high pressure-rise rates due to rapid combustion events, and stability issues resulting from the lack of a direct ignition trigger. SA-HCCI or SACI is a two-stage, hybrid advanced combustion mode, which uses spark-ignition and flame propagation to directly initiate or stimulate the occurrence of auto-ignition and HCCI-like combustion [5–7]. SACI allows for combustion under conditions not possible when exclusively using SI or HCCI. SACI can also be used to reduce peak heat release rates. Experimental studies have confirmed the viability of SACI and have suggested potential operating strategies (e.g. [8,9]). Conceptual studies have also demonstrated that sizable vehicle fuel economy gains, between 23% and 58%, are achievable if SACI can be effectively implemented [10].

Optimization of HCCI and SACI methods requires improved understanding of the important combustion processes. Heat release analysis is an essential tool for interpreting experimental pressure data from HCCI, SACI and conventional spark ignition (SI) strategies, and heat release analysis of experimental data provides key inputs for model development and validation. Heat release analysis typically follows a regressive modeling approach, where the measured in-cylinder pressure, combustion efficiency and estimated trapped masses are used to calculate the mean gas temperature, composition, and combustion heat release. Download English Version:

https://daneshyari.com/en/article/6688795

Download Persian Version:

https://daneshyari.com/article/6688795

Daneshyari.com