
A generic model-free approach for lithium-ion battery health
management

Guangxing Bai a, Pingfeng Wang a,⇑, Chao Hu b,1, Michael Pecht b

a Department of Industrial and Manufacturing Engineering, Wichita State University, Wichita, KS 67260, USA
b Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA

h i g h l i g h t s

� A new ANN based battery model is developed and integrated with the Kalman filtering technique for battery health management.
� The developed ANN based model can be updated along with the Kalman filtering process at the battery operating stage.
� The developed model is adaptive and eliminates the dependency of expensive empirical battery models.
� The developed approach enables accurate estimations of both short term SoC and long term capacity.
� Experimental results demonstrated the efficacy of the developed battery health state estimation approach.
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a b s t r a c t

Accurate estimation of the state-of-charge (SoC) and state-of-health (SoH) for an operating battery sys-
tem, as a critical task for battery health management, greatly depends on the validity and generalizability
of battery models. Due to the variability and uncertainties involved in battery design, manufacturing and
operation, developing a generally applicable battery model remains as a grand challenge for battery
health management. To eliminate the dependency of SoC and SoH estimation on battery physical models,
this paper presents a generic data-driven approach that integrates an artificial neural network with a dual
extended Kalman filter (DEKF) algorithm for lithium-ion battery health management. The artificial neural
network is first trained offline to model the battery terminal voltages and the DEKF algorithm can then be
employed online for SoC and SoH estimation, where voltage outputs from the trained artificial neural
network model are used in DEKF state–space equations to replace the required battery models. The
trained neural network model can be adaptively updated to account for the battery to battery variability,
thus ensuring good SoC and SoH estimation accuracy. Experimental results are used to demonstrate the
effectiveness of the developed model-free approach for battery health management.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

With the prevalence of portable electronic equipment, applica-
tion of lithium-ion batteries as major energy storage devices has
spread into an increasing number of fields related to human life
such as smart phones and electric vehicles. Safe and reliable oper-
ation of lithium-ion batteries is of vital importance, as unexpected
battery failures could result in enormous economic and societal
losses. Capacity fade and resistance increase due to aging of battery
cells directly affect the performance of a battery pack by
decreasing both energy and power outputs [1]. Thus, developing

an effective battery management system (BMS), which can moni-
tor degradation of battery performance and predict remaining use-
ful life (RUL) in real time, becomes an indispensable task. For a
BMS, state-of-charge (SoC) and state-of-health (SoH) are two
important parameters indicative of battery health conditions; thus,
accurately estimating them becomes a paramount task in BMS
development [2,3].

Extensive Research has been conducted on lithium-ion batter-
ies in the last decade with an aim to enhance reliability and safety,
resulting in a number of SoC and SoH estimation techniques. One of
the most commonly used SoC estimation approach is the ampere
hour counting technique [4], which calculates SoC values by inte-
grating current with respect to time. Although this technique can
generally provide accurate SoC estimations, it requires not only
accurate initial SoC information but also high precision current
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sensors to acquire real time current information. Because of these
limitations, the ampere hour counting technique has been mainly
used as a benchmark method in research due to its high accuracy.
In common practice, battery manufacturers generally utilize open
circuit voltage (OCV) measurements to find out corresponding
SoC values from SoC–OCV tables, which are made based on experi-
ments by comparing SoC and OCV under different temperature
conditions [5]. In order to avoid expensive experimental effort in
making SoC–OCV tables under practical dynamic loading condi-
tions, several advanced SoC and SoH estimation techniques have
been recently developed in the literature [6–12]. Artificial neural
network (ANN) models have been employed for direct estimation
of SoC or SoH with batches of training samples [6,7]. Electrochem-
ical impedance spectroscopy (EIS) has also been used for the same
purpose [8,9]. Further study on EIS has employed a fuzzy logic
approach to estimate SoC with EIS data [10]. In addition, the auto-
regressive moving average (ARMA) model has been developed to
compute SoC while using measured impedance data for model
validation purposes [11]. Moreover, a Bayesian framework particle
filter technique has been used within a Bayesian framework for
battery RUL prediction, whereby an empirical circuit model is
developed for characterization of battery system dynamics [12].
More recently, He et al. [13] developed an approach using
Dempster-Shafer theory (DST) and the Bayesian Monte Carlo
(BMC) method for the estimation of both SoH and RUL. Hu et al.
developed different approaches to estimate capacity and predict
RUL [14,15]. A model based dynamic multi-parameter method
was proposed to estimate the peak power of Li-ion batteries by
Sun et al. [16]. Waag et al. [17] investigated the battery impedance
characteristics at different conditions and demonstrated the signif-
icant decreasing of SoC range due to aging. Miranda and Hong [18]
developed an integrated model for high power cylindrical batteries
to improve the SoC accuracy under extended operating conditions.
He et al. [19] employed the unscented particle filter to estimate SoC
using their developed new working model. Zheng et al. [20]
developed a mean-plus-difference model to estimate SoC. Sun
et al. [21] developed a health diagnosis method based on the
approximate entropy. Raza et al. [22] developed a sustainability
index approach to quantify the qualitative aspects of battery
systems, which could choose the ideal energy storage system for
specific scenarios. Besides the SoC and SoH estimation, a few
experimental explorations have been done for battery aging under
various conditions. McManus [23] investigated the environmental
impact in low carbon systems for the charge and discharge cycles.
Dai et al. [24] overviewed the potential reliability risks from free
air cooling (FAC), and presented a prognostics and health manage-
ment (PHM) for failure prediction. Bishop et al. [25] evaluated the
impact of V2G services on the degradation of batteries.

Because of the capability to deal with battery system dynamics
for long-term battery health management, Kalman filtering based
techniques have been employed by researchers to estimate battery
SoC and SoH. Plett [26,27] implemented the extended Kalman filter
(EKF) technique to estimate the SoC for hybrid-electric-vehicle
(HEV) applications, in which a physical-based circuit model,
namely the enhanced self-correcting (ESC) model, was developed
to facilitate the EKF implementation. Hu et al. [28] improved the
algorithm by estimating the SoC and SoH using a multi-scale dual
extended Kalman filter (DEKF). He et al. [29] used unscented Kal-
man filtering (UKF) to estimate the SoC. The UKF is considered as
an improved algorithm to addresses highly nonlinear problems,
which the EKF technique could have difficulty to handling. The
adaptive EKF is also a very popular technique for SoC estimation
[30,31]. Among existing techniques for SoC and SoH estimation,
Kalman filtering has been considered to be more capable of han-
dling battery system dynamics for long-term health management.
However, explicit battery models are generally required to provide

inputs, such as the battery terminal voltage estimations, while
using the Kalman filtering technique. Although two types of
analytical models have been developed in the literature, namely
electrochemical models [32,33] and equivalent circuit based mod-
els [1,26,27,34,35], there are three key limitations prohibiting the
Kalman filtering based techniques from broad applications: (i)
developing a valid analytical model to characterize inherent bat-
tery system dynamics and accurately estimating model parameters
generally require expensive and labor-intensive experiments; (ii)
maximum available capacity of an aged battery system is generally
much lower than the rated capacity due to the battery aging effect;
however, analytical models used by Kalman filtering could not
effectively capture the capacity fade over time, thus, existing
Kalman filtering based techniques are generally not capable of pro-
viding accurate long-term SoH prediction; and (iii) estimated
model parameters for battery analytical models used by Kalman
filter could vary significantly due to variability in battery materials
and operating conditions, which accordingly leads to large varia-
tions in SoC and SoH estimation. Besides working on analytical
models, a data-driven model based Kalman filter method has rarely
been investigated in the literature. Charkhgard and Farrokhi [36]
developed a novel SoC estimation approach using neural networks
and an extended Kalman filter. Comparing with analytical models,
the developed approach is a data-driven technique that avoids the
effort required to analyze battery system dynamics and estimate
model parameters, thus can be generally applied to a wide variety
of rechargeable batteries. However, the developed method
employs a rated capacity for SoC estimation without considering
the effect of capacity fade, which could cause substantial SoC
estimation errors for the long-term operation of a battery system.

There remain two challenges for battery SoC and SoH estima-
tion: the dependency of SoC and SoH estimation on analytical mod-
els, and the lack of effective SoH estimation techniques considering
the effect of capacity fade. To address these challenges, this paper
presents a new data-driven approach to estimate SoC and SoH for
health management of lithium-ion battery systems. The developed
approach overcomes the aforementioned limitations of existing
Kalman filtering based techniques by eliminating the dependency
on a battery physical model. Instead, the relationship between the
terminal voltage, SoC, current, and capacity of an aged battery will
be approximated by an artificial neural network (ANN). The ANN
will be trained with offline data and adaptively updated with online
measurements. The trained ANN will be employed in state space
equations by the DEKF method to perform the online estimation
of SoC and SoH for an aged battery. Because the developed approach
employs an ANN model, it can avoid expensive model development
process compared to existing approaches based on physical or elec-
trical models. Moreover, because the ANN model will be updated
adaptively with evolving online measurements, the developed
approach can not only capture the capacity fade over time effec-
tively, but also make SoC and SoH estimation more robust consider-
ing the variability in battery materials and operating conditions.
The rest of the paper is organized as follows. Section 2 introduces
the definitions of SoC and SoH, and briefly reviews the DEKF
method for SoC and SoH estimation. Section 3 explains approxima-
tion of battery terminal voltage using a structured ANN model, and
presents the integration of an ANN model with the DEKF method for
SoC and SoH estimation. Section 4 presents an experimental case
study and the results. A brief conclusion and suggested future work
will be provided in Section 5.

2. Related works

This section presents related work and terminology in battery
health management. Section 2.1 discusses the definitions of SoC
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