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a b s t r a c t

For the steady forced convection cooling of an isothermal spherical object in an axially symmetric
incompressible fluid flow at high P�eclet numbers, where the heat transport occurs mainly in a thin
thermal boundary layer near the surface of the object, the relation: Nu∝Pe1=2 or Nu∝Pe1=3 between the
Nusselt number and the P�eclet number is generally found. In this paper we investigate for the general
case of a 3-dimensional object immersed in a 3-d incompressible fluid flow the connection between
these two characteristic numbers and obtain a similar relation: Nu ∝ Pe1= kþ2ð Þ with integer values k � 0 ,
where k depends only on the boundary conditions of the fluid flow field at the surface of the object.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

This work was triggered by the search for a physical model,
describing the cooling of a liquid, electro-magnetically levitated
metal droplet [1] by a poorly heat conducting Argon gas stream.
Due to the low thermal conductivity l∞ of the gas and the high
characteristic speed v0 of its flow along the droplet of characteristic
dimension R0, the low thermal energy, transferred by heat con-
duction from the droplet surface in normal direction into the gas, is
quickly “blown away” in tangential direction as schematically
illustrated in Fig. 1. The heat transferred by conduction from the
front-side of a sphere of temperature TS and of area 4pR20=2 into the
fluid, which can roughly be estimated by the left hand side of Eq. (1)
(cf. Eq. (5) below)

4pR20
2

l∞
TS
d
z2pR0d rcpv0TS; (1)

is conveyed by convection through a virtual shell of thickness d and
of cross section z2pR0d around the sphere. The strength of this
convective heat flow can roughly be estimated by the right hand
side of Eq. (1) (cf. Eq. (4) below), where r denotes the density of the

fluid and cp its specific heat. With the definition of the P�eclet
number [2] equation (1) finally reads

Pe :¼ v0rcpR0
l∞

z
R20
d2

; (2)

showing that for Pe[1 the total convective heat transport occurs
mainly in a thin thermal boundary layer of typical thickness d≪R0
around the droplet.

The steady heat transfer from an isothermal sphere of radius R0
into an incompressible fluid stream at high P�eclet number has been
the subject of different theoretical investigations since many years
[3e6]. It turns out in these papers, that the Nusselt number

Nu :¼ 2P
4pR0l∞ðTS � T∞Þ; (3)

which represents a dimensionless form of the convective heat
(energy) flow P between the isothermal sphere of temperature TS
and a heat sink of temperature T∞ at infinity, is only proportional to
Nu∝Pe1=3, see Ref. [3], or toNu∝Pe1=2, see Refs. [4e6], dependent on
the particular velocity field (Stokes flow, constant flow field, po-
tential flow) of the fluid streaming along the sphere. The constants
of proportionality in these relations are of Oð1Þ (Ref. [3, Eq. (4)]
noted C1 ¼ 0:991 for the first relation, and Ref. [4, Eq. (44)]E-mail address: Georg.Lohoefer@dlr.de.
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calculated C0 ¼ 1:13 for the second one). These results immediately
raise several questions: Wherein exists the deeper connection be-
tween the energy loss P of an object immersed in a fluid stream,
defined in Eq. (3) or (8), and the P�eclet number (2) ? What de-
termines the special rational number in the exponent of the P�eclet
number ? Depends it also on the shape of the object and the
temperature field on its surface ? Which role plays the fluid flow
field ?

In the following these questions are answered theoretically for
the general 3-dimensional case of an incompressible fluid flow field
of high P�eclet number, streaming along an object of arbitrary shape
and surface temperature field. Details are given in the next section.
Even under these very general conditions the simple relation Nu ¼
CkPe

1=ðkþ2Þ with non-negative integer values k holds independently
of the particular temperature field in the thermal boundary layer
around the object. The value of k depends only on the boundary
condition and the behavior of the fluid flow field near the object.
For a shear flow with no-slip boundary conditions for example,
which is mostly observed in practical applications, and for which
the value k ¼ 1 results (see Sec. 3), we find Nu ¼ C1Pe1=3. The val-
idity of this simple relation has from a practical point of view the
advantage, that Ck, which is a constant that contains all the
complicated geometric details of the 3-dimensional temperature
distribution and flow field near the object, can easily and accurately
be determined experimentally and needs not to be calculated
theoretically.

2. Formulation of the problem

The total steady heat transport in a moving medium relative to a
fixed observer consists in a superposition of convective heat flow,
i.e., the movement of heat containing fluid elements, and conduc-
tive heat flow, i.e., the diffusion of heat within in the fluid driven by
a temperature gradient. The first mechanism is physically described
by the convective heat flow density

jmovðxÞ :¼ vðxÞrcpTðxÞ; (4)

where the product of the mass density r, which is considered to be
constant here, with the specific heat cp (related to themass) and the
steady temperature field TðxÞ in the fluid just corresponds to its
local heat (energy) density, and where vðxÞ denotes its steady flow
field. The second mechanism is physically described by the
conductive heat flow density

jconðxÞ :¼ �lðxÞVTðxÞ; (5)

where the thermal conductivity of the fluid lðxÞ ¼ lðTðxÞÞ with
l∞ :¼ l T∞ð Þ, cf. Eq. (10), is a function of its temperature field.
Neglecting dissipative heat generation by the viscous shear flow,
the total heat in the fluid is conserved in the steady state. This
means that locally

V$½jmovðxÞ þ jconðxÞ� ¼ 0: (6)

Mass conservation in the incompressible fluid implies analogously.

V$vðxÞ ¼ 0: (7)

For a solid object immersed in the fluid the total heat flow
(power) from its surface vSð0Þ into the surrounding fluid hence
results in

P :¼ %
vSð0Þ

½jconðxSÞ þ jmovðxSÞ�$nðxSÞdSðxSÞ

¼ � %
vSð0Þ

lðxSÞnðxSÞ$VTðxSÞdSðxSÞ; (8)

where it was assumed, that the component of the fluid flow field in
normal direction n(xS) to the surface disappears in each point
x ¼ xS on the object surface, i.e.,

nðxSÞ$vðxSÞ ¼ 0: (9)

This means, that on the object surface heat transfer into the sur-
rounding fluid is performed by conduction only. For the tempera-
ture field of the fluid it is supposed, that on the object surface it
corresponds to the surface temperature field TSðxSÞ, and that “far
away” from the object it assumes the constant value T∞

T xSð Þ ¼ TS xSð Þ and lim
jxj/∞

T xð Þ ¼ T∞: (10)

The Eq. (4)e(10) form the basic set of equations for a description of
the general steady heat transfer problem in a given incompressible
fluid flow field vðxÞ.

In the present work the following conditions are assumed:

1) An incompressible fluid flow field vðxÞ circulates around a 3-
dimensional object of surface temperature field TSðxSÞ, as
sketched in Fig. 2. The surface vSð0Þ of the object is assumed to
be convex and smooth enough (no edges), such that a curvature
can everywhere be defined with the two orthogonal radii
RC1ðxSÞ and RC2ðxSÞ being in the order of magnitude of the
characteristic object dimension R0

R0 :¼ hjxSji ¼ %
vSð0Þ

jxSjdSðxSÞ
,

%
vSð0Þ

dSðxSÞ: (11)

2) Only the case of high P�eclet numbers, defined in Eq. (2), is
considered here, where, due to the low characteristic thermal
conductivity l∞ of the fluid and the high characteristic speed v0
of its flow along the object, the thermal energy, diffusing ac-
cording to Eq. (8) from its surface vSð0Þ in normal direction into
the fluid, is tangentially “blown away”, so that according to our
considerations in the introduction the total heat transfer from
the object into the fluid occurs in a thin thermal boundary layer
of thickness dðxSÞ≪R0 only. Consequently the temperature

Fig. 1. Schematic cut showing the fluid flow circulating around a hot sphere (grey) of
temperature TS and radius R0 and the resulting heat flow inside the (cross hatched)
thermal boundary layer of thickness d.
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