

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Absorption heating technologies: A review and perspective

Wei Wu, Baolong Wang, Wenxing Shi, Xianting Li*

Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China

HIGHLIGHTS

- Classifications and principles of various absorption heating cycles are presented.
- Applications and studies in civil, industrial and rural fields are reviewed.
- Summaries and suggestions are presented to extend absorption heating technologies.

ARTICLE INFO

Article history: Received 27 March 2014 Received in revised form 6 May 2014 Accepted 14 May 2014

Keywords:
Absorption heating
Absorption heat pump
Heat supply
Temperature upgrading
Industrial energy efficiency
Rural energy efficiency

ABSTRACT

Absorption heating has attracted increased attention due to its irreplaceable advantages in energy conservation and pollution reduction in heating and domestic hot water supplies. This paper presents the classifications and principles of different absorption heating cycles and comprehensively reviews their statuses and development in different application fields. Civil applications include direct-fired chiller/heaters, fuel-driven absorption heat pump water heaters, the latent heat recovery of vapors, hybrid compression—absorption heating, solar—assisted absorption heat pumps, absorption—based district heating, thermal energy storage and transportation, ground source absorption heat pumps and thermal imbalances in cold regions. Industrial applications include absorption—assisted drying, absorption—assisted evaporation, absorption—assisted distillation, and absorption—assisted waste heat recovery. Additionally, several rural application concepts are also provided. Based on the reviews, essential summaries and suggestions are presented, which are expected to extend the absorption heating technologies for additional contributions to energy conservation and environmental protection.

© 2014 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction				
2.	Description of various absorption heating technologies				
	2.1.	Classifi	ications of absorption heating	52	
	2.2.	Princip	oles of absorption heating	53	
		2.2.1.	Absorption heat pump (AHP)	53	
		2.2.2.	Absorption heat storage system (AHS)	53	
		2.2.3.	Absorption heat transportation (AHTR).	54	
		2.2.4.	Absorption heat transformer (AHT)	54	
		2.2.5.	Compression–absorption heat pump (CAHP)	54	
		2.2.6.	Open-cycle absorption heat pump (OAHP)	55	
		2.2.7.	Absorption heat exchanger (AHE)	55	
3.	Civil applications				
	3.1. Direct-fired absorption chiller/heater			55	
	3.2. Fuel-driven AHP water heater			56	
	3.3. Latent heat recovery of vapor		heat recovery of vapor.	58	
	3.4.		CAHP heating systems		
	3.5.		ssisted AHP heating		

^{*} Corresponding author. Tel.: +86 10 62785860; fax: +86 10 62773461. E-mail address: xtingli@tsinghua.edu.cn (X. Li).

	3.6.	District heating systems	60
	3.7.	Thermal energy storage and transportation	61
	3.8.	GSHP and thermal imbalance in cold regions	61
	3.9.	Summary of civil applications	62
4.	Indust	trial applications	62
	4.1.	Absorption-assisted drying	62
	4.2.	Absorption-assisted evaporation	64
	4.3.	Absorption-assisted distillation	64
	4.4.	Absorption-assisted waste heat recovery.	66
	4.5.	Summary of industrial applications	68
5.	Rural	applications.	68
6.	Discus	ssions and challenges	68
		Economic performance	
	6.2.	Future challenges and issues	68
7.	Perspe	ectives and conclusions	69
	Ackno	owledgement	69
	Refere	ences	69

Nomenclature **ECOP** AHE absorption heat exchanger exergy coefficient of performance GAX **AHP** absorption heat pump generator absorber heat exchange **AHS** absorption heat storage system **GSHP** ground source heat pump AHT absorption heat transformer GSAHP ground source absorption heat pump absorption heat transportation **AHTR GSEHP** ground source electrical heat pump **ASAHP** air-source absorption heat pump GUE gas utilization efficiency **CAHP** compression-absorption heat pump HAT humid air turbine **CCHP** combined cooling, heating and power LHX liquid heat exchange open-cycle absorption heat pump **OAHP** CHP combined heating and power COP coefficient of performance **OAHT** open-cycle absorption heat transformer DHW domestic hot water PEE primary energy efficiency

1. Introduction

Recent decades have witnessed an increasing worldwide popularity of absorption chillers and heat pumps due to their irreplaceable advantages in renewable energy utilization and waste heat recovery. With ever-growing efforts on energy conservation and emission reductions, absorption technologies play a significant role in global energy and environmental issues.

Absorption cycles generally use natural fluids (such as H₂O–LiBr and NH₃–H₂O) as working pairs, which do not contribute to global warming or ozone depletion [1]. Absorption cycles are attractive options for solar cooling, while gas-fired absorption cooling is a good alternative for peak-load shifting. Moreover, the ability for low-grade heat utilization makes absorption systems attractive in geothermal cooling, waste heat cooling and combined cooling, heating and power (CCHP) systems [2,3].

The majority of studies on absorption technologies have focused on cooling and refrigeration applications. Recently, absorption heating has received increased attention due to its advantages in improving the efficiency of existing heating and domestic hot water systems [4,5]. The nationwide issue of smog and haze in China highlights the urgency to innovate and upgrade heating systems in northern China to systems that require less coal and reduce pollutant emission. Additionally, heat supply systems in rural areas and industrial processes should also be modified for better performance. This paper reviews the status and development of absorption heating technologies used for civil, industrial and rural applications. The classifications and principles of different absorption heating cycles, and essential summaries and suggestions are presented, which are expected to extend absorption

heating technologies to contribute to energy conservation and environmental protection practices.

2. Description of various absorption heating technologies

2.1. Classifications of absorption heating

The classifications of various absorption heating technologies are shown in Fig. 1. According to the characteristics of heat quantity change or temperature change, absorption heating can be classified into 4 categories: (1) heat increasing, to output more heat energy than the supplied heat source (i.e., heat multiplier); (2) heat shifting, to transfer the available heat from the present time to a future time (i.e., absorption heat storage) or from one place to another (i.e., absorption heat transportation); (3) temperature upgrading, to export a hot stream with a higher temperature than the input stream; (4) temperature adapting, to adapt the fluid temperature like an electrical adapter. An absorption heat exchanger is a type of temperature adapting system, and can overcome the limitations of traditional heat exchangers.

For each type of absorption heating system, there are various absorption cycles for different conditions. For example, in an absorption heat pump (AHP), singe-effect is the basic cycle used under normal conditions, whereas a multi-stage, compression-assisted and coupled cycle can be used under lower evaporation temperatures, higher condensation and absorption temperatures or lower generation temperatures [6,7]. Additionally, a multi-effect and a generator absorber heat exchange (GAX) cycle can be used to achieve higher efficiency [8], and an open-cycle can be used for the recovery of the latent heat in the vapor.

Download English Version:

https://daneshyari.com/en/article/6689980

Download Persian Version:

https://daneshyari.com/article/6689980

<u>Daneshyari.com</u>