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h i g h l i g h t s

� Solar forecast value is investigated using day-ahead market and real-time market prices.
� Day-ahead and real-time price differentials promote biased bids into the energy market.
� A bias-corrected (improved) day-ahead forecast resulted in lower yearly revenue.
� Adding deviations penalties disincentivizes biased forecasts.
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a b s t r a c t

In this study, production forecast value is investigated using day-ahead market (DAM) and real-time mar-
ket (RTM) locational marginal prices (LMP) at 63 sites in California. Using the North American Mesoscale
(NAM) Model, day-ahead global horizontal irradiance (GHI) forecasts are established and converted to
power assuming that a 1 MW solar photovoltaic plant is co-located at each observation site. Using this
forecast, energy is hypothetically sold in the DAM. As the RTM occurs, deviations between forecast and
observation are settled by hypothetically purchasing or selling energy at the RTM price. Total revenue
is calculated by the sum of these two transactions.

Comparison of NAM forecast revenue to perfect day-ahead forecast revenue shows that perfect forecast
revenue is always greater. However, yearly NAM forecast revenue is as much as 98% of the perfect fore-
cast revenue for some sites. After a bias-correction is applied to NAM forecasts, NAM forecast revenue
decreases. This demonstrates that based on the observed DAM-RTM price spread, biased forecasts can
have a higher forecast value than more accurate forecasts. However, when a deviation penalty is assessed,
the most accurate forecasts always yield the highest total revenue.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Forecasting of weather conditions such as global horizontal
irradiance (GHI), wind speed, direction, and expected power
production is essential for the efficient integration of renewable
power into the energy portfolio. For solar, there are two prominent
groups that require forecasts: solar power generators and system
operators. Solar power generators are entities that own production
facilities and profit from the sale of energy. Independent System
Operators (ISOs), however, are primarily concerned with grid reli-
ability and require energy forecasts to plan the dispatch of energy,
determine spinning reserve requirements, and calculate energy
procurement needs. As these two entities have varied interests,
there is a mismatch between their individual definitions of the best
possible forecast. For instance, it is possible for a power generator

to benefit economically from using biased (rather than accurate)
forecasts. This is detrimental to the systems operator’s goal of reli-
ability of the power grid [1]. As such, system operators cannot rely
solely on market commitment information and generally contract
with third party forecasting services to provide independent
energy production forecasts.

For the system operator, forecast accuracy is the accepted stan-
dard for evaluating forecast effectiveness. Also known as quality
[2], accuracy is the deviation between a forecast and a co-located
observation. ISOs prefer high-accuracy forecasts as these are most
useful for grid reliability purposes. Solar power generators, how-
ever, rely on forecast value. Forecast value is the direct monetary
benefit of the forecast [2]. As the price of energy is not fixed, fore-
cast quality does not necessarily directly translate to forecast
value. For example, a forecast that is of high quality during peak
net load times of the day (when energy prices are high and errors
are more costly) may be more valuable than a forecast with higher
quality only at less critical times. For ISOs, forecast value is a
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secondary consideration and used to minimize energy generation,
transmission, and reserve costs on the grid. For example, an under-
forecast (predicting too little energy production) would result in
over-procurement of energy and possibly result in transmission
congestion near the solar power plant. Alternatively, an overfore-
cast (predicting more energy than is ultimately produced) would
result in under-procurement of energy and a purchase of energy
from reserves or regulation at additional cost.

In California, the California Independent Service Operator
(CAISO) allows solar power producers to participate in the Partici-
pating Intermittent Resource Program (PIRP). PIRP requires day-
and hour-ahead forecasts in addition to historical observations of
energy production and local meteorological data (global horizontal
irradiance (GHI), direct normal irradiance (DNI), temperature, and
wind) [3]. On the net monthly forecast deviation, ‘uninstructed
imbalance energy’ charges are assessed. These monthly settle-
ments can be positive or negative (reimbursement). However, no
penalties for individual day- or hour-ahead forecast errors are ap-
plied. As such, there is currently no incentive for generators to pro-
vide accurate daily forecasts. However, utility-scale solar power
plants will eventually participate in the energy market following
the same bidding and settlement rules as conventional power
sources (as is already the case for Red Electrica in Spain), including
wind power (in most energy markets).

Previous studies have investigated the integration of renewable
energy (predominately wind power) into energy markets. Using
Midwest ISO (MISO) pricing data, Botterud et al. (2011) found that
optimal day-ahead wind energy bids are primarily driven by price
expectations (rather than forecast energy production) when no
deviation penalty is applied. However, adding a deviation penalty
diminished the difference between the optimal wind energy bid
and the most accurate wind energy forecast [4]. In the Spanish en-
ergy market, Fabbri et al. (2005) estimated the costs associated
with wind energy forecast errors by assuming that forecast devia-
tions are balanced in real-time by reserve energy and found that
error prediction costs can be as much as 10% of the total income
annually from the energy generation [5]. Bathurst et al. [6], found
that forecast revenue is dependent on the difference between the
contract (DAM) price and the imbalance (RTM) price for the UK en-
ergy market. There, a Markov-probabilistic forecast was used to
determine the most profitable energy commitment. Pinson et al.
[7] devised an optimum bidding strategy using forecast uncer-
tainty to dramatically increase revenue. Additionally, Mills and
Wiser [8] found that in a 30% solar photovoltaic (PV) penetration
scenario day-ahead forecast error and ancillary services costs were
$3.0/MWh and decreased capacity and energy value of PV by 11%
(23% for CSP).

From the ISO perspective, the integration of solar energy results
in additional cost due to increased uncertainty and variability. Por-
ter et al. (2013) quoted a Public Service Company of Colorado
(PSCo) study as directed by the Colorado Public Utilities Commis-
ion (CPUC) in which integration costs ranged from $1.25/MWh to
$6.06/MWh [9]. There, each additional 100 MW of installed solar
resulted in an increased cost of $1/MWh. To reduce these costs, en-
ergy forecasts are relied upon. Milligan et al. (1995) found that the
most accurate forecast provides the lowest cost of operations when
integrating wind power. However, improving a forecast to 100%
accuracy has declining marginal benefits [10]. Using price data
from the New York ISO (NYISO), Ruiz et al. (2009) showed that a
stochastic-based forecast system reduced the cost of operations
by up to 2% over a deterministic-based forecast when optimized
to the constraints of the power system [11]. In California, assuming
7.5 GW of wind generation, a GE Energy study found that using
existing wind forecasting technology saved $68 million/year in
operation costs [12]. Furthermore, the Western Wind and Solar
Integration Study (WWSIS, Lew et al., 2010) found that using

state-of-the-art day-ahead wind and solar forecasts in the unit
commitment process would reduce Western Electricity Coordinat-
ing Council (WECC) operating costs by up to $5 billion/yr for 25%
wind and 5% solar (by energy) penetrations. Using a perfect fore-
cast would result in additional cost savings of $500 million/yr
[13]. A complete review of forecast value studies for renewable
energy applications can be found in Chapter 7 of Giebel et al.
(2011) [14].

In this study, the value of a solar power forecast in the CAISO
system is examined. This is particularly of interest as the CAISO
market contained 47% of the nation’s installed solar power as of
2010 [15]. Ideally, the value of a forecast would be evaluated from
both a power generator’s and system operator’s perspective. How-
ever, modeling forecast value to a system operator is complex and
requires knowledge of available resources, start-up and running
costs, and the system operator unit commitment rules. These fac-
tors vary among system operators and, consequently, such a study
would be ISO-specific. Large-scale studies such as WWSIS have al-
ready generalized these factors to investigate cost savings due to
wind and solar forecasts. Rather, this paper will focus on market
participants such as solar power generators (after discontinuation
of PIRP). Using CAISO pricing data (Section 2.1), the price difference
between the day-ahead market (DAM) and real-time market (RTM)
will be examined (Section 3.1). Next, using numerical weather pre-
diction (NWP) solar forecasts (Section 2.2), forecast value (Sec-
tion 2.3) will be determined for 63 sites in California and
geographic data trends explained. Previous studies have not calcu-
lated a monetary forecast value in this manner. Furthermore, the
effect of a hypothetical deviation penalty on forecast value will
examined (Section 3.2). Finally, solar forecasts will be corrected
using a simple model output statistics (MOS) bias-correction
function. The value of corrected forecasts will be compared to
uncorrected. Overall, it will be shown that when no deviation pen-
alty is included, positively biased forecasts have the highest value
to solar power generators. However, when a deviation penalty is
included, the most accurate forecast yields the highest value.

2. Methods

2.1. Energy price data and market structure

Energy price data was obtained from the CAISO Open Access
Same-time Information System (OASIS). OASIS has over 4500
nodes at which a Locational Marginal Price (LMP) is reported.
These nodes represent locations in the CAISO power grid where
energy can be bought or sold into the market. The LMP is the
sum of three components: energy, loss, and congestion. The energy
component represents the average price of generating a MWh of
electricity and by convention is the same at all price nodes. The
loss component represents the cost of transmission losses associ-
ated with the delivery of electricity to that price node. Lastly, the
congestion component monetizes the transmission constraints in
delivering electricity to a price node. All LMP components are re-
ported for the day-ahead (DA), hour-ahead (HA), and real-time
(RT) markets. DA forecasts must be submitted at 0530 (local time)
on the day prior (Day 0 in Table 1) to the operating day. The oper-
ating day (Day 1 in Table 1) begins at midnight (0000) and extends
24 h. DA forecasts are provided on an hourly basis for each of the
24 h of the operating day (Table 1). Therefore, the DA forecast
horizon is 18.5–42.5 h. Similarly, the HA forecast is submitted
105 min prior to each operating hour. However, in this study, HA
prices and forecasts are not used.

DAM LMP (the market price at which a DA forecast is commit-
ted) and RT market (RTM) LMP (the price at which settlements are
made) from June 1, 2010 to May 31, 2011 were used in this study.
Additionally, hour-beginning DAM LMP (e.g. the 0800 DAM LMP
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