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a b s t r a c t

This paper proposes a solution method for the inverse spray cooling problemwith relatively long cooling
time. The entire time domain is divided into several sub-time intervals. By minimizing the mean square
error between the experimental data obtained from inside the body and the estimated data from the
derived analytical solution of a spray cooling problem with time-dependent boundary conditions, the
temperature function at the spray cooling surface in each sub-time interval can be predicted.

Consequently, the temperature distribution and the heat flux over the entire time and space domains
can also be obtained. In addition, the integral transform and tedious numerical operations are not
required in the proposed solution method. Mathematical and experimental examples are given to
illustrate the simplicity, efficiency, and accuracy of the proposed method.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Inverse heat conduction problems (IHCPs) arise in many heat
transfer situations when experimental difficulties are encountered
in measuring or producing the appropriate boundary conditions.
Practical applications are the estimation of the temperature and the
heat flux at the surface of the body under investigation. Rapid
cooling and quenching in metal foundries, cooling of electronics
components are typical examples of spray cooling.

The present study considers spray cooling on a hot surface. It is
well known that under the spray cooling process, the surface
temperature of the test hot surface was the most important
parameter in quenching and was used to define the distinct heat
transfer regimes of the boiling curve. Thus, during the spray cooling
process, accurate estimations of the temperature and heat flux on
the surface are important. Due to the difficulty of measuring the
temperature and heat flux from the spray cooling surface directly,
these physical quantities are estimated from the measured tem-
perature data inside the body within the spray cooling time inter-
val. Such estimation is a typical inverse heat conduction problem.

Many numerical techniques have been proposed for solving
one-dimensional IHCPs. Among these methods, the finite differ-
ence method, the finite element method, and the boundary
element method are the numerical tools of choice for the modeling
and simulation of IHCPs. Lesnic and Elliott [1] employed Adomian's
decomposition and the mollification method to deal with noisy
input data and obtained a stable approximate solution. Monde and
Mitsutake [2], Monde et al. [3] and Woodfield et al. [4] developed
an analytical method using the Laplace transform and half poly-
nomial series of timewith a time lag to estimate thermal diffusivity,
surface temperature, and heat flux for one-dimensional IHCPs. They
recommended choosing the measurement points as close to the
surface as possible to obtain a good estimation. Hon andWei [5], Jin
and Zheng [6], and Yan et al. [7] developed meshless and
integration-free numerical schemes based on the use of the
fundamental solution as a radial basis function for one-dimensional
IHCPs. However, the resulting matrix equation is complicated and it
is difficult to obtain accurate results. With experimental data, Qiao
and Chandra [8] and Cui et al. [9] applied the sequential function
specification method to estimate the surface heat flux. Hsieh et al.
[10] applied the transient liquid crystal technique and thermo-
couple to determine the variation of the surface temperature with
time during spray cooling of a hot surface for pure water and R-
134a. Chen and Lee [11] proposed a hybrid technique of the Laplace
transform and the finite difference method in conjunction with
experimental temperature data inside a test cylinder to predict the
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spray cooling surface temperature. Lee and Huang [12] introduced a
hybrid inverse scheme involving the analytic solution, least-square
methods in conjunction with experimental data inside the test
material, to study inverse laser surface heating problem. The heat
treatment time is short and takes less than 7 s.

Most existing solution methods have to deal with tedious nu-
merical problems, such as the inverse Laplace transform, stability in
numerical schemes, and large numbers of cells or elements in
matrix operations. In addition, it is recommended that the tem-
perature measuring point be close to the heat treatment surface.

In the present study, we extend the previous study [12] and
study the inverse spray cooling problem with relatively long heat
treatment time. The entire time domain is divided into several sub-
time intervals, depending on the experimental data. Also, by
minimizing the mean square errors between the measured exper-
imental data obtained from inside the body and the estimated data
from the derived analytical solution form, the unknown tempera-
ture function at the spray cooling surface, in polynomial function
form, can be determined. Consequently, the temperature distribu-
tion and the heat flux within each sub-time interval and space
domains can also be obtained. The proposed solution method does
not require integral transform and tedious numerical operations.
Mathematical and experimental examples are given to illustrate
the analysis. The developed solution method is simple, efficient,
and accurate. It can be applied to problems with various kinds of
time-dependent boundary conditions.

2. Mathematical formulation

Consider the spray cooling of the surface of a 25.4 mm diameter
copper cylinder, as shown in the schematic diagram in Fig. 1, from
Qiao and Chandra's work [8]. To reduce the heat loss, the heater
block and the sides of the cylindrical test surface are insulated with
mineral wool. The material properties of the cylinder are constants.
Four 0.5 mm diameter K-type (chromelealumel) thermocouples
are applied to measure the temperatures of the test cylinder at four
different locations of x1 ¼ 0.4 mm, x2 ¼ 6.75 mm, x3 ¼ 13.1 mm and
x4 ¼ 19.85 mm. Fig. 1 shows a schematic diagram of the inverse
problem. The lower end of the cylinder was bolted to a copper
heater block that housed two 500 W cartridge heaters, which were
regulated by a temperature controller, holding the surface tem-
perature constant before water was sprayed on it. The mathemat-
ical formulation, basic assumptions and experimental temperature
data used in this study come from the works of Qiao and Chandra
[8] and Cui et al. [9]. The time-dependent temperature function, f(t),
at the spray cooling surface is to be determined. A time-dependent
temperature boundary condition is applied at the other end f0(t).

The governing differential equation and the boundary condi-
tions of the system are:

k
v2Tðx; tÞ

vx2
¼ rc

vTðx; tÞ
vt

; 0< x< L; t>0 (1)

Nomenclature

Bn(t) dimensionless quantity defined in equation (31)
BnSj(t) dimensionless quantity defined in equation (A9)
c specific heat (W s/kg �C)
CjS coefficients of dimensionless time-dependent function
C vector in matrix equation
ES function representing the error within each spray

cooling sub-time interval
f(t) time-dependent temperature function at the spray

cooling surface

f ðtÞ dimensionless time-dependent function
f0(t) time-dependent function for first-kind boundary

condition

f0ðtÞ dimensionless time-dependent function for first-kind
boundary condition

fS(t) time-dependent function at the spray cooling surface
within sub-time interval

f SðtÞ dimensionless time-dependent function at the spray
cooling surface within sub-time interval

f0S(t) time-dependent function for first-kind boundary
condition

f 0SðtÞ dimensionless time-dependent function for first-kind
boundary condition

F(x,t) dimensionless quantity defined in equation (23)
g1(x), g2(x) shifting functions
k thermal conductivity (W/m �C)
L length of cylinder (m)
ps number of measured times in s-th sub time interval
q(x,t) dimensionless heat flux
R vector in matrix equation
Ns number of sub-time intervals

T temperature (�C)
Tr reference temperature (�C)
T0S(x) initial temperature (�C) for Sth sub-time interval
Tmea
S ðxm; trÞ temperature measured at (xm, tr) for S-th sub-time

interval
t time variable (s)
tr time of temperature measurement
Um mean droplet impact velocity, m/s
x spatial-domain variable (m)
Z matrix in matrix equation

Greek symbols
an dimensionless quantity defined in equation (33)
dn norm of n-th eigenfunctions
εn dimensionless quantity defined in equation (A6)
fn(x) n-th eigenfunction
gn(t) dimensionless quantity defined in equation (32)
hjS(x,t) dimensionless quantity defined in equation (A8)
hjSr(x) dimensionless quantity defined in equation (A8) as

t ¼ tr
ln n-th eigenvalue
n(x,t) transformed function
q dimensionless temperature
q0S dimensionless initial temperature for S-th sub-time

interval
qmea
S ðxm; trÞ dimensionless temperature measured at (xm,, tr) for

S-th sub-time interval
r mass density (kg/m3)
t dimensionless time variable
tr dimensionless measured times
x dimensionless spatial-domain variable
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