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a b s t r a c t

The conjugate gradient method (CGM) is an efficient iterative regularization technique for solution of the
inverse heat conduction problem (IHCP). However, most of the existing CGM schemes deal with linear
boundary conditions and constant thermophysical properties. Little attention has been paid to formulate
the CGM with radiation boundary condition and temperature-dependent thermophysical properties. In
this study, a nonlinear CGM scheme is formulated to recover the front surface heating condition of a 3-D
object, based on the temperature measurements at back surface. The 3-D object is subjected to a high-
intensity Gaussian laser beam heating on the front surface and a combined radiation and convection
boundary condition on the back surface. The derivations of the direct problem, adjoint problem and
sensitivity problem are presented in detail. The results are presented for two materials and excellent
agreement between the inverse and exact solutions are demonstrated.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

The inverse heat conduction problems (IHCPs) are mathemati-
cally classified as ill-posed, so special solution techniques are
usually required to transform the ill-posed IHCP into a well-posed
one. Although some analytical solutions are available for this
purpose (e.g., [1e5]), their application is limited to the IHCPs in
one-dimension or simple configuration in 2 or 3 dimensions. For
this reason, a number of numerical approaches have been devel-
oped for the solution of IHCPs. The interested readers can refer to
the books of Tikhonov et al. [6], Beck et al. [7], Alifanov [8] and
Özisik [9] for details about these solution techniques.

The majority of the numerical methods restate the inverse
problem as a least-squares minimization problem over the
whole-time domain or in sequential time intervals. Among
those, the conjugate gradient method (CGM) has been receiving
more and more attentions since it can improve the convergence
rate of inverse estimation by choosing the direction of descent
as the linear combination of the gradient direction at current
iteration with the direction of descent at previous iteration [10].
Due to its excellent self-adjusting, global convergence property,
the CGM has been extensively used to solve multidimensional

IHCPs (e.g. [11e14]). Efforts have also been made to develop
nonlinear inverse approaches in estimating thermophysical
properties and convective heat transfer coefficients at bound-
aries [15e18]. But most of the algorithms dealt with 1-D or 2-D
problems. Recently, Liu proposed to use lie-group shooting and
time-marching methods to solve nonlinear inverse problems
[19,20]. More work is needed in extending their applications
into multidimensional analysis.

Recently, the authors employed the CGM to reconstruct the
front-surface heating condition with back-surface heat flux and
temperature measurement data with application background in
high-energy laser interaction with target [21,22], but only linear
boundary conditions are considered. To the best of the author’s
knowledge, little work has been done to formulate the IHCP
with radiation boundary condition and temperature-dependent
thermophysical properties in a 3-D configuration. In this study,
a 3-D CGM is formulated to reconstruct the front surface heating
condition based on the temperature measurement data at the
back surface to which a combined radiation and convection
boundary condition is imposed. The simulated measurement
data are obtained by solving a direct problem in which the front
surface is subjected to laser heating as well as convection-
radiation cooling and the back surface is subjected to con-
vectioneradiation cooling. The robustness of the formulated 3-D
IHCP algorithm is tested for two materials that are commonly
used in aerospace engineering.
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2. Model description

A three-dimensional object is considered as shown in Fig. 1.
Initially, the object is under a uniform temperature T0 and then
is subjected to a high-intensity Gaussian laser beam qlaser (w is
the 1/e radius) on the front surface from t ¼ 0þ. The purpose of
this study is to demonstrate the effectiveness and accuracy of
the proposed IHCP formulation in reconstructing the observed
heat flux q1 (y, z, t) and temperature T1 (y, z, t) on the front
surface of a 3-D target with temperature-dependent thermo-
physical properties, based on the measured temperature on the
back surface.

2.1. Direct problem

The direct problem can be expressed as follows:
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where h, 3and TN are assumed to be constant.
In the direct problem described above, the front-surface heat

flux q1 (y, z, t) is considered to be known. The objective of the direct
problem here is to determine the transient temperature and heat
flux distribution in the target. As can be seen in Eq. (4), the back
surface (x¼ L) is subjected to a radiation boundary condition, which
makes the heat conduction a nonlinear problem.

Nomenclature

C volume specific heat, J/(m3$K)
dk (y, z, t) direction of descent at iteration k, which is sometimes

expressed in vector form dk

h convection heat transfer coefficient, W/(m2$K)
im total number of temperature measurements
k thermal conductivity, W/(m$K)
L object length in x direction, m
M object length in y direction, m
N object length in z direction, m
q heat flux, W/m2

qlaser periodic laser heat flux on front surface, W/m2

qmax maximum heat flux at the laser Gaussian beam center,
W/m2

q1 (y, z, t) observed heat flux on front surface which is
sometimes expressed in vector form q1, W/m2

Dq1ðy; z; tÞ heat flux perturbation on front surface
r radius measured from laser spot center, m
S objective function
VS½qk1� gradient direction of objective functional at iteration k
DS½qk1� objective function variation
t time, s
tf final time, s
Dt time step, s
T temperature, K
T0 initial temperature, K
TN ambient temperature, K
T1 (y, z, t) front surface temperature, K
DT½L; y; z; t; dk� temperature variation, which is sometimes

simplified as DT , when the surface heat flux is
perturbation is Dq1ðy; z; tÞ ¼ dkðy; z; tÞ

w 1/e radius of Gaussian laser beam, m
x, y, z spatial coordinate variables, m
YTLexact (y, z, t) temperaturemeasurement datawithout errors on

back surface obtained by numerical simulations, K
YTL (y, z, t) measurement temperature on the back surface, K

Greek symbols
a surface absorptivity
bk search step size at iteration level k
c tolerance used to stop the CGM iteration procedure
d Dirac delta function
3 surface emissivity
4 standard deviation of temperature measurements, K
gk conjugate coefficient at iteration level k
l (x, y, z, t) Lagrange multiplier
s StefaneBoltzmann constant, s ¼ 5.67 � 10�8

W/(m2$K4)
u a random variable having a normal distribution with

zero mean and unitary standard deviation
x perturbed variable

Superscripts
k iteration level

Subscripts
0 initial
f final
q heat flux
T temperature
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Fig. 1. Physical model.
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