Applied Energy 114 (2014) 179-191

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Dynamic flow control and performance comparison of different concepts of two-phase on-chip cooling cycles

AppliedEnergy

Jackson Braz Marcinichen^{a,*}, Duan Wu^a, Stephan Paredes^b, John R. Thome^a, Bruno Michel^b

^a Laboratory of Heat and Mass Transfer (LTCM), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
^b IBM Research GmbH, Zurich Research Laboratory, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland

HIGHLIGHTS

• Experimentally evaluated a hybrid on-chip two-phase cooling cycle.

• Steady-state and transient operation of two parallel pseudo-chips.

• Control strategies evaluated by reference tracking and disturbance rejection tests.

• Energetic and exergetic comparison with two other cooling cycles.

ARTICLE INFO

Article history: Received 17 February 2013 Received in revised form 4 September 2013 Accepted 14 September 2013 Available online 17 October 2013

Keywords: Data center Server board On-chip two-phase cooling cycle Micro-evaporator Control Map of performance

ABSTRACT

A hybrid on-chip two-phase cooling cycle specifically designed to cool server boards with chips of high performance computers was experimentally evaluated considering steady-state and transient operation of two parallel pseudo-chips and auxiliary electronics mimicking a real server board. Control strategies were developed and evaluated by reference tracking and disturbance rejection tests considering several setpoints of controlled variables. The hybrid cycle, operating with a common refrigerant R134a as the working fluid, was energetically and exergetically compared with two other cooling cycles experimentally evaluated in a previous study, one driven by an oil-free gear pump and another by an oil-free mini-compressor. The results showed that, for a specific steady state condition and heat load, respectively 28.9%, 51.9% and 62.5% of the energy out of the pump, compressor and hybrid cycles were associated with heat losses. The differences observed between the three cycles were justified firstly due to the concept of the cycles, i.e. cycles with the compressor showed as expected lower thermal performance than that with pump since its appeal is for energy recovery (benefitting from a higher condensing temperature) and secondly due to the irreversibilities observed in drivers, condenser and piping (thermal insulation). In summary, the three cycles proved to be efficient, simple and reliable concepts to cool server boards (CPUs, DIMMs etc.), showing high thermal performance and potential for heat recovery when compared with traditional air-cooling systems in current use in data centers. It can also be said that the pump cycle showed the best results in terms of energy and exergy, with the cooling and heat recovery performances reaching a maximum of about 5 and 1.8 times higher than the other cycles (worth noting that the focus in the present study was two-phase flow control and proof-of-concept of different cooling loops, meaning that no "optimal" system design was attempted and the differences above can be reduced).

© 2013 Elsevier Ltd. All rights reserved.

Contents

1.	Introc	luction .		180
2.	Coolir	ng cycles	and controllers	182
	2.1.	Hybrid	cooling cycle and instrument uncertainties	182
	2.2.	Control	llers	183
		2.2.1.	Control strategies and structure	184
		2.2.2.	Vapor quality (x_o), condensing pressure (P_{cond}) and approach temperature (ΔT_{cond}) controllers	184
		2.2.3.	SISO–SIMO–SIMO integrated control strategy	184

* Corresponding author. Tel.: +41 21 693 5894; fax: +41 21 693 5960. *E-mail address: jackson.marcinichen@epfl.ch* (J.B. Marcinichen).

^{0306-2619/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.apenergy.2013.09.018

Nomenclature

A_{SMV} stepper motor valve aperture,% A_{Tord} difference in temperature between outlet water flow and inlet working fluid flow in the condenser (approach temperature), °C E_d inlet and outlet flow exergies, $ kg^{-1}$ ΔT_{lm} log mean temperature difference, K temperature difference, - R_{lm} k_p, b_p inlet and outlet flow exergies, $ kg^{-1}$ ΔT_{lm} log mean temperature difference, K temperature difference, K k_p MKE indet specific enthalpy, $k kg^{-1}$ R_{lm} heat recovery efficiency, - R_{lm} k_{lm} MKE outlet specific enthalpy, $k kg^{-1}$ R_{lm} heat recovery efficiency, - R_{lm} K_r Pl proportional gain r_D desired closed-loop time constant, s K_r Pl integral gain K_p static gain of the systemSubscripts PC_S speed of mater liquid pump, rpm Sp setpoint m mass flow rate, $kg s^{-1}$ $R_{construction}$ $R_{construction}$ p position of the pole in the complex planCOPcoefficient of performance P_p MKE indet pressure, barCVPglobal warming potential R_{out} condensing pressure, barEVVglobal warming potential P_n MKE indet temperature, °CLPNLPN Q_{out} condensing temperature, °CLPNLPN Q_{out} condensing temperature, °CLPNLPN R_{out} condensing temperature, °CLPNLPN R_{out} fulle temperature, °CLPN Q_{out} <th>Roman</th> <th></th> <th>Greek</th> <th></th>	Roman		Greek		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	A _{SMV}	stepper motor valve aperture,%	ΔT_{cond}	difference in temperature between outlet water flow	
the control volume, W the control volume, W the and outlet flow exergings, Ikg ⁻¹ AT MME inter specific enthalpy, KJ kg ⁻¹ thatter specific enthalpy, KJ kg ⁻¹ thatter specific enthalpy, KJ kg ⁻¹ thatter specific enthalpy, KJ kg ⁻¹ that recovery efficiency, - that recovery efficiency, - thalpy, KJ kg ⁻¹ that recovery efficiency, - that recovery efficiency, - thalpy, KJ kg ⁻¹ that recovery efficiency, - that recovery efficienc	Ė _d	rate of exergy destruction due to irreversibilities within		and inlet working fluid flow in the condenser (approach	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		the control volume, W		temperature), °C	
$ \begin{array}{cccc} & \mbox{transfer function of the system} & \eta_c & \mbox{coling cycle efficiency,} \\ h_L MMete \\ het Mete specific enthalpy, kJ kg^{-1} & \eta_{tr} & heat recovery efficiency, \\ \eta_{tr} & heat recovery efficiences, \\ 0 & \mbox{transport delay, s} \\ \eta_c & \mbox{transport delay delay} \\ \eta_c & \mbox{transport delay, s} \\ \eta_c & \mbox{transport delay}$	ė _{fi} , ė _{fe}	inlet and outlet flow exergies, J kg^{-1}	ΔT_{lm}	log mean temperature difference, K	
h_1 MME inlet specific enthalpy, kJ kg ⁻¹ η_{hrr} heat recovery efficiency, - H_{LMMEs} overall heat load on the MMEs, W k_{cond} condenser effectiveness, - H_{s} closed-loop transfer function θ transport delay, s h_b MME outlet specific enthalpy, kJ kg ⁻¹ rtime constant, s K_{C} PI proportional gain T_{D} desired closed-loop time constant, s K_{C} PI proportional gain T_{D} desired closed-loop time constant, s K_{C} PI proportional gain $Subscripts$ FC_{S} speed of main liquid pump, rpm Sp m mass flow rate, kg s ⁻¹ CPC chorofluorocarbons p position of the pole in the complex planCOP p condensing pressure, barCPC P_{rond} condensing pressure, barEEV P_{rond} condensing pressure, barEEV Q_{ond} condensing pressure, barGWP Q_{input} total input power applied on the pseudo-chips and post heater, WIHEx Q_{input} total input power applied on the pseudo-chips and post heater, WLPR Q_{input} total input power applied on the pseudo-chips and post heater, wCLP I_{int} instantaneous temperature, "CLA I_{int} instantaneous temperature, "CLA I_{int} instantaneous temperature, "CLA I_{int} inter temperature, "CLA I_{int} inter temperature, "CLA I_{int}	Ġ	transfer function of the system	η_c	cooling cycle efficiency, –	
HILAMMEsoverall heat load on the MMEs, Wto condenses effectiveness, -H(S)closed-loop transfer function0transport delay, sh_6MME outlet specific enthalpy, kl gc ⁻¹ rtime constant, sK_PPirtegral gainrfunctionKostatic gain of the systemSubscriptsLPCsspeed of water liquid pump, rpmspini, ini, ini, ini, ini, ini ent and outlet mass flow rate, kg s ⁻¹ CPCpposition of the pole in the complex planCPCPcondensing pressure, barCPCPcondensing pressure, barCPUPondensing pressure, barCWPPMME inlet pressure, barCWPPondensing pressure, barCWPQuotcondensing pressure, barCWPQuotcondensing pressure, barCWPQuotcondensing pressure, barCWPPMME inlet pressure, barCWPQuotcondensing prestrate, WCWPQuotcondensing preparture, °CLPRIMME inlet temperature, °CLPRIMME inlet temperature, °CLPIintigual timeMMETointergal timeMMETointergal timeMMETointergal timeMMETointergal temperature, °CLPIMME intert temperature, °CLPIintergal temperature, °CLPIintergal temperature, °CLAIinter	h _i	MME inlet specific enthalpy, kJ kg $^{-1}$	η_{hr}	heat recovery efficiency, –	
H(3)closed-loop transfer function0transport delay, sh_0MME outlet specific enthalpy, kJ kg ⁻¹ rtime constant, sK_CPI proportional gainTdesired closed-loop time constant, sK_RPt integral gainSubscriptsLPC3speed of main liquid pump, rpmspinmass flow rate, kg s ⁻¹ AcronymsTim, meinlet and outlet mass flow rate, kg s ⁻¹ CFCpposition of the pole in the complex planCOPPgain-scheduled parameterCPUPondcondensing pressure, barCPCPMME inlet pressure, barCWPondcondensing trenser, barGWPQuantcondensing trenser rate, WGBTRomucondensing trenser rate, WIHE internal heat exchangerQuantcondensing temperature, °CLPCIinstantaneous temperature, °CLPRIintegral timeMME indet pressure heatTinstantaneous temperature, °CLPRIintegral timeMME outlet temperature, °CTintegral timeMMETodad state temperature, °CLSImicro-evaporatorTinter water temperature, °CTmicro-evaporatorTinter water temperature, °CTinter water temperature,	HLMMEs	overall heat load on the MMEs, W	Econd	condenser effectiveness, –	
h_0^+ MME outlet specific enthalpy, kJ kg^{-1} τ time constant, s K_C PJ proportional gain τ_D desired closed-loop time constant, s K_P Integral gain τ_D desired closed-loop time constant, s K_P speed of main liquid pump, rpm sp setpoint PW_S speed of water liquid pump, rpm sp setpoint in , m inle than outlet mass flow rate, kg s ⁻¹ CFC chorofluorocarbons p gain-scheduled parameterCPUcentral processing unit P_{ond} condensing pressure, barEEVelectric expansion valve P_1 MME inlet pressure, barEUVelectric expansion valve P_0 condenser heat transfer rate, WGWPglobal warming potential Q_{ond} condenser heat transfer rate, WLPCvariable speed cycle (main) liquid pump Q_1 heat transfer rate, WLPKvariable speed cycle (main) liquid pump Q_1 instantaneous temperature, °CLAliquid separator T_1 instantaneous temperature, °CLSliquid separator T_1 integral timeMIMOmultiple input multiple output T_0 dead state temperature, °CPIproportional integral controller $T_{water,M}$ updet temperature, °CPIproportional integral controller $T_{water,M}$ updet temperature, °CPIproportional integral controller $T_{water,M}$ updet temperature, °CPIproportional integral controller T_{wate	H(s)	closed-loop transfer function	θ	transport delay, s	
K_c PI proportional gain τ_D desired closed-loop time constant, s K_r regral gain τ_D desired closed-loop time constant, s K_r static gain of the systemSubscripts LPC_s speed of main liquid pump, rpm sp tPW_s speed of water liquid pump, rpm sp th mass flow rate, kg s ⁻¹ Acronyms p position of the pole in the complex planCPC P gain-scheduled parameterCPU P_{ound} condensing pressure, barEEV P_{ound} condenser heat transfer rate, WGWP Q_{ond} condenser heat transfer rate, WGWP Q_{ond} condensing temperature, °CLP q_{input} total input power applied on the pseudo-chips and postLP q_{input} total input power applied on the pseudo-chips and postLP T_0 MME outlet temperature, °CLPLP T_i instantaneous temperature, °CLPLP T_i instantaneous temperature, °CLPLA T_i instantaneous temperature, °CLAliquid accumulator T_i integral timeMMEMIMO T_i uitet water temperature, °CPIproportional integral controller $T_{vateroidu}$ uitet water temperature, °CPIPi poportional integral controller T_i instantaneous temperature, °CPIPi poportional integral controller T_i instantaneous temperature, °CPIPi poportional integral con	h _o	MME outlet specific enthalpy, kJ kg $^{-1}$	τ	time constant, s	
K_r PI integral gainSubscripts K_ρ static gain of the system sp K_{C} speed of main liquid pump, rpm sp LPV_S speed of water liquid pump, rpm sp m mass flow rate, kg s ⁻¹ $Acronyms$ m_i , m_i intel and outlet mass flow rate, kg s ⁻¹ $Acronyms$ p position of the pole in the complex plan COP P gain-scheduled parameter CPU P_{cond} condensing pressure, bar CPV $condensing pressure, barEEVelectric expansion valveP_iMME inlet pressure, barGWPQ_{cond}condenser heat transfer rate, WGWPQ_{input}total input power applied on the pseudo-chips and postHEXR_{cond}condensing temperature, °CLPWV_imatter temperature, °CLPWT_iinstantaneous temperature, °CLPWT_iinstantaneous temperature, °CLST_iinstantaneous temperature, °CLST_iinstantaneous temperature, °CMMET_iinstantaneous temperature, °CPIT_iinstantaneous te$	Ň _C	PI proportional gain	$ au_D$	desired closed-loop time constant, s	
K_{p} static gain of the systemSubscriptsLPCsspeed of main liquid pump, rpm pp LPCsspeed of main liquid pump, rpm pp min , min_{p} infer and outlet mass flow rate, kg s ⁻¹ $Acronyms$ min_{h} , min_{p} infer and outlet mass flow rate, kg s ⁻¹ $Acronyms$ pp gain-scheduled parameterCPCchorofluorocarbons P gain-scheduled parameterCPUcentral processing unit P_{cond} condensing pressure, barEEVelectric expansion valve P_{0} MME inlet pressure, barGWPglobal warning potential P_{o} total input power applied on the pseudo-chips and post heater, WIGBTinsulated-gate bipolar transistor Q_{input} total input power applied on the pseudo-chips and post heater, W LPRlow pressure receiver Q_{input} total input power applied on the pseudo-chips and post heater, W LPRlow pressure receiver T_{o} MME inlet temperature, °CLPvariable speed water (secondary fluid) liquid pump I_{j} instananeous temperature, °CLAliquid accumulator T_{j} instananeous temperature, C LSliquid separator T_{j} integral timeMIMEODPozone depletion $T_{varearin}$ intel water temperature, C PPu propritional integral controller $T_{varearin}$ intel water temperature, C PUpower usage effectiveness t_{i} system inputSMVstepper motor valve </td <td>K_I</td> <td>PI integral gain</td> <td>2</td> <td></td>	K _I	PI integral gain	2		
LPCsspeed of main liquid pump, rpmspBCSUPPEspeed of water liquid pump, rpmspStructurespeed of water liquid pump, rpmspimmass flow rate, kg s ⁻¹ CFCininlet and outlet mass flow rate, kg s ⁻¹ CFCpposition of the pole in the complex planCOPcoefficient of performanceCPUremovedcondensing pressure, barCPUecondcondensing pressure, barEEVelectric expansion valvePPMME outlet pressure, barGWPQondcondenser heat transfer rate, WGBTQondcondensing temperature, SCLPliquid pumpliquid pumpheater, WLPCvariable speed cycle (main) liquid pumpliquidinsulated-gate bipolar transistorLPliquid accumulatorTotal input power applied on the pseudo-chips and postIMME inlet temperature, °CLPliquid accumulatorImME inlet temperature, °CIMME inlet temperature, °CImitoreIintegral timeTodead state temperature, °CImodensing temperature, °CIwater tempera	К _Р	static gain of the system	Subscripts		
LPWsspeed of water liquid pump, rpm pp $sceptinemmass flow rate, kg s-1Acronymsm, m_einlet and outlet mass flow rate, kg s-1CFCchorofluorocarbonspgain-scheduled parameterCPUcentral processing unitP_{cond}condensing pressure, barCPUcentral processing unitP_{cond}condensing pressure, barCPUcentral processing unitP_{ond}condenser heat transfer rate, WGWPglobal warming potentialP_{on}MME outlet pressure, barGWPglobal warming potentialP_{ond}condenser heat transfer rate, WIBEVinsulated-gate bipolar transistorQ_{input}total input power applied on the pseudo-chips and postheater, WIPCvariable speed varter (secondary fluid) liquid pumpI_{ondent}condensing temperature, °CIPWvariable speed varter (secondary fluid) liquid pumpI_{ondent}instantaneous temperature, °CISIiquid accumulatorI_{o}dead state temperature, %CISIiquid separatorI_{i}instantaneous temperature, %CPIproportional integral controllerI_{vater,int}ingut warte, secondary fluid) liquid pumpI_{o}dead state temperature, %CPII_{i}integral timeMMEI_{o}varte temperature, %CPII_{i}integral timeMIMEI_{o}varte temperature, %CPII_{o}eeds st$	LPCs	speed of main liquid pump, rpm	sn	setnoint	
m mass flow rate, kg s ⁻¹ Acronyms m_i , m_e inlet and outlet mass flow rate, kg s ⁻¹ Acronyms p position of the pole in the complex planCOPcoefficient of performance P gain-scheduled parameterCDPcoefficient of performance P_{cond} condensing pressure, barEEVelectric expansion valve P_i MME outlet pressure, barGWPglobal warming potential P_o MME outlet pressure, barIHExinternal heat exchanger Q_{cond} condenser heat transfer rate, WGBTinsulated-gate bipolar transistor Q_{input} total input power applied on the pseudo-chips and postIPliquid pump Q_j heat transfer rate, WIPlow pressure receiver T_{cond} condensing temperature, °CIPliquid accumulator T_i instantaneous temperature, °CIAliquid accumulator T_i instantaneous temperature, °CISliquid accumulator T_i instantaneous temperature, °CIAMIMO T_i intet water temperature, °CPIproportional integral controller $T_{water,in}$ inlet water temperature, °CPIproportional integral controller $T_{water,an}$ pawed ochip input power, WSISOsingle input multiple output V_{cond} condenser overall conductance, W K^{-1}SIMOsingle input single output V_{cond} sum of input power, WVCvapor compressor W_{input} pseudo chip input power, W	LPWs	speed of water liquid pump, rpm	SP	Selpoint	
\dot{m}_i, \dot{m}_e inlet and outlet mass flow rate, kg s ⁻¹ $ACOMPS$ p position of the pole in the complex plan CFC chorofluorocarbons p gain-scheduled parameter CPU central processing unit P_{cond} condensing pressure, bar EV electric expansion valve P_i MME inlet pressure, bar EV electric expansion valve P_o MME outlet pressure, bar GWP global warming potential P_o MME outlet pressure, bar GWP global warming potential Q_{cond} condenser heat transfer rate, W GBT insulated-gate bipolar transistor Q_{input} total input power applied on the pseudo-chips and post IPR low pressure receiver \dot{Q}_i heat transfer rate, W LPR low pressure receiver T_{cond} condensing temperature, °C LPW variable speed water (secondary fluid) liquid pump I_i instantaneous temperature, °C LPW variable speed water (secondary fluid) liquid pump I_i instantaneous temperature, °C LS liquid accumulator I_i instegral timeMIMOmultiple input multiple output I_0 dead state temperature, °C P_1 prover usage effectiveness I_i system input MKE^{-1} SIMOsingle input multiple output V_{cond} condenser overall conductance, $W K^{-1}$ SIMOsingle input multiple output V_{cond} condenser overall conductance, $W K^{-1}$ SIMOsingle input multiple output <t< td=""><td><i>m</i></td><td>mass flow rate, kg s^{-1}</td><td>1</td><td></td></t<>	<i>m</i>	mass flow rate, kg s^{-1}	1		
pposition of the pole in the complex planCPCChronoutocarbonsPgain-scheduled parameterCOPcoefficient of performancePcondensing pressure, barCPUcentral processing unitPmME inlet pressure, barCWPglobal warming potentialPoMME outlet pressure, barGWPglobal warming potentialPoMME outlet pressure, barGWPglobal warming potentialPoMME outlet pressure, barGWPglobal warming potentialPototal input power applied on the pseudo-chips and post heater, WIHExinternal heat exchangerCondcondensing temperature, °CLPliquid pumpfortemperature, °CLPliquid separatorTiinstantaneous temperature, °CLSliquid accumulatorTodead state temperature, °CLSliquid separatorTwater, ininlet water temperature, °CPIproportional integral controllerTwater, ininlet water temperature, °CPIproportional integral controllerTwater, inusystem inputSMVstepper motor valveWinputsum of input power applied on drivers and actuators, WSISOsingle input multiple outputWinputsum of input power applied on drivers and actuators, WVCvapor compressorYsystem outputysystem outputVCvapor compressorVsystem outputysystem outputVCvapor compressorVinputysystem	ḿi, ḿe	inlet and outlet mass flow rate, kg s^{-1}	ACTONYIN	S about fuero contron a	
Pgain-scheduled parameterCOPcoefficient of performancePcondensing pressure, barCPUcentral processing unit P_{cond} condensing pressure, barEEVelectric expansion valve P_i MME inlet pressure, barGWPglobal warming potential P_o MME outlet pressure, barIHEinternal heat exchanger Q_{cond} condenser heat transfer rate, WIGBTinsulated-gate bipolar transistor Q_{input} total input power applied on the pseudo-chips and post heater, WIPliquid pump Q_{input} total input power applied on the pseudo-chips and post heater, WIPliquid pump T_i condensing temperature, °CLPliquid accumulator T_i mME inlet temperature, °CLPliquid accumulator T_i instantaneous temperature, °CLSliquid separator T_i instantaneous temperature, °CLSliquid separator T_i instantaneous temperature, °CMIMOmultiple input multiple output T_0 dead state temperature, °CMIMOmultiple input multiple output T_0 dead state temperature, °CPIproportional integral controller $T_{water,in}$ inlet water temperature, °CPIproportional integral controller W_{water} system inputSMVstepper motor valve W_{input} sum of input power applied on drivers and actuators, WSISOsingle input multiple output X_0 MME's outlet vapor quality (mixing point), - <td>n n</td> <td>position of the pole in the complex plan</td> <td>CFC</td> <td></td>	n n	position of the pole in the complex plan	CFC		
P_{cond} condensing pressure, barCPUcentral processing unit P_i MME inlet pressure, barEEVelectric expansion valve P_o MME outlet pressure, barGWPglobal warming potential P_o MME outlet pressure, barIHExinternal heat exchanger Q_{cond} condenser heat transfer rate, WIBCTinsulated-gate bipolar transistor Q_{input} total input power applied on the pseudo-chips and post heater, WLPCvariable speed cycle (main) liquid pump \dot{Q}_j heat transfer rate, WLPCvariable speed vater (secondary fluid) liquid pump T_{cond} condensing temperature, °CLAliquid accumulator T_o MME inlet temperature, °CLAliquid separator T_j instantaneous temperature, °CLSliquid separator T_i integral timeMIMOmultiple input multiple output T_0 dead state temperature, °CPIproportional integral controller $T_{water,in}$ inlet water temperature, °CPIproportional integral controller $T_{water,in}$ usystem inputSMVstepper motor valve W_{cond} condenser overall conductance, W K ⁻¹ SIMOsingle input multiple output W_{input} sum of input power, WSISOsingle input single output W_{input} sum of input power, WSISOsingle input single output χ_{input} sum of input power, WVCvapor compressor with variable volumetric dis- γ_i system	P	gain-scheduled parameter	COP	coefficient of performance	
PointMME inlet pressure, barEVelectric expansion value P_0 MME inlet pressure, barGWPglobal warming potential Q_{cond} condenser heat transfer rate, WIHExinternal heat exchanger Q_{input} total input power applied on the pseudo-chips and postLPliquid pump \dot{Q}_j heat transfer rate, WLPlow pressure receiver T_{cond} condensing temperature, °CLPWvariable speed water (secondary fluid) liquid pump T_i MME inlet temperature, °CLAliquid accumulator T_i instantaneous temperature, °CLSliquid separator T_i instantaneous temperature, °CMIMOmultiple input multiple output T_0 dead state temperature, °CPI T_i intert temperature, °CPI T_i outlet water temperature, °CPI T_i outlet water temperature, °CPI T_i outlet water temperature, °CPI u system inputSMV V_{cond} condenser overall conductance, W K ⁻¹ W_{cv} energy transfer rate by work, W W_{input} pseudo chip input power, W W_{input} sum of input power, W V_{cv} energy transfer rate by work, W N_{input} sum of input power, w W_{inpu	Pcond	condensing pressure, bar	CPU	central processing unit	
$ \begin{array}{cccc} & \text{MME outlet pressure, bar} & \text{GWP} & \text{global Warming potential} \\ & \text{Gond} & \text{condenser heat transfer rate, W} & \text{IHEx} & \text{internal heat exchanger} \\ & \text{Insulated-gate bipolar transistor} \\ & \text{heater, W} & \text{IPC} & \text{variable speed cycle (main) liquid pump} \\ & \text{heater, W} & \text{IPC} & \text{variable speed cycle (main) liquid pump} \\ & \text{heater, W} & \text{IPC} & \text{variable speed cycle (main) liquid pump} \\ & \text{figure from the pressure receiver} \\ & \text{for the transfer rate, W} & \text{IPC} & \text{variable speed water (secondary fluid) liquid pump} \\ & \text{figure from the transfer rate, W} & \text{IPC} & \text{variable speed water (secondary fluid) liquid pump} \\ & \text{figure from the transfer rate, W} & \text{IPR} & \text{low pressure receiver} \\ & \text{for the transfer rate, C} & \text{IA} & \text{liquid accumulator} \\ & \text{Integral time} & \text{MME outlet temperature, °C} & \text{IS} & \text{liquid separator} \\ & \text{figure from the transfer rate, K} & \text{MME} & \text{micro-evaporator} \\ & \text{figure from the twater temperature, K} & \text{ODP} & \text{ozone depletion} \\ & \text{fwater, in} & \text{inter water temperature, °C} & \text{PI} & \text{proportional integral controller} \\ & \text{fwater, in} & \text{inter water temperature, °C} & \text{PI} & \text{proportional integral controller} \\ & \text{fwater, out} & \text{system input} & \text{system input} & \text{sum of input power, W} & \text{SISO} & \text{single input multiple output} \\ & \text{W}_{input} & \text{sum of input power, W} & \text{SISO} & \text{single input single output} \\ & \text{w}_{input} & \text{sum of input power, applied on drivers and actuators, W} \\ & x_o & \text{MMEs' outlet vapor quality (mixing point), -} \\ & y & \text{system output} \\ & z & \text{position of the zero in the complex plan} \\ & z & \text{position of the zero in the complex plan} \\ \end{array}$	P;	MME inlet pressure, bar	EEV	electric expansion valve	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pa	MME outlet pressure, bar	GWP	global warming potential	
Cond Q_{input} total input power applied on the pseudo-chips and post heater, WICB1insulated-gate bipolar transistor Q_{input} total input power applied on the pseudo-chips and post heater, WLPliquid pump Q_j heat transfer rate, WLPCvariable speed cycle (main) liquid pump T_{cond} condensing temperature, °CLPWvariable speed water (secondary fluid) liquid pump T_i MME inlet temperature, °CLAliquid accumulator T_o MME outlet temperature, °CLSliquid pump unultiple output T_0 dead state temperature, KMMEmicro-evaporator T_i instantaneous temperature, °CPIproportional integral controller $T_{water,in}$ inlet water temperature, °CPIproportional integral controller $T_{water,in}$ inputcondenser overall conductance, W K^{-1}SIMOsingle input multiple output W_{cv} energy transfer rate by work, WSISOsingle input miltiple output W_{input} pseudo chip input power, WVCvapor compressor W_{input} system outputVCvapor compressor with variable volumetric dis- placement z position of the zero in the complex planplan	0 0 cond	condenser heat transfer rate. W	IHEX	internal heat exchanger	
CamputFor the problem of the pockado campo and postLPInquid pump \dot{Q}_j heater, WLPRlow pressure receiver T_{cond} condensing temperature, °CLPRlow pressure receiver T_i MME inlet temperature, °CLPWvariable speed water (secondary fluid) liquid pump T_i MME outlet temperature, °CLAliquid accumulator T_i instantaneous temperature, °CLSliquid separator T_i instantaneous temperature, KMMEmicro-evaporator T_i integral timeMIMOmultiple input multiple output 0 dead state temperature, °CPI $T_{water,out}$ outlet water temperature, °CPI $vatter,out$ outlet water temperature, °CPI u system inputSMV W_{cv} energy transfer rate by work, WSISO W_{input} pseudo chip input power, WSISO W_{input} pseudo chip input power, WVC v_{a} MMEs' outlet vapor quality (mixing point), -VSC y system outputvapor quality (mixing point), -VSC y system outputpacino of the zero in the complex planvapor compressor	Q:	total input power applied on the pseudo-chips and post	IGBI	insulated-gate bipolar transistor	
Q_j heat transfer rate, WLPCvariable speed cycle (main) liquid pump C_{cond} condensing temperature, °CLPRlow pressure receiver T_i MME inlet temperature, °CLPWvariable speed water (secondary fluid) liquid pump T_i MME outlet temperature, °CLAliquid accumulator T_o MME outlet temperature, °CLSliquid separator T_j instantaneous temperature, KMMEmicro-evaporator T_i integral timeMIMOmultiple input multiple output T_0 dead state temperature, °CPIproportional integral controller $T_{water,ini}$ inlet water temperature, °CPIproportional integral controller $T_{water,out}$ outlet water temperature, °CPIEpower usage effectiveness u system inputSiMOsingle input multiple output W_{cv} energy transfer rate by work, WSiSOsingle input multiple output \dot{W}_{cv} pseudo chip input power, WVCvapor compressor w_{input} pseudo chip input power, WVCvapor compressor w_{input} system outputysystem output z position of the zero in the complex planplacement	C anput	heater W	LP	liquid pump	
LPRIow pressure receiver T_{cond} condensing temperature, °CLPWvariable speed water (secondary fluid) liquid pump I_i MME inlet temperature, °CLAliquid accumulator T_o MME outlet temperature, °CLSliquid separator T_j instantaneous temperature, KMMEmicro-evaporator T_1 integral timeMIMOmultiple input multiple output T_0 dead state temperature, KODPozone depletion $T_{water,in}$ inlet water temperature, °CPIproportional integral controller $T_{water,out}$ outlet water temperature, °CPIpower usage effectiveness u system inputSMVstepper motor valve UA_{cond} condenser overall conductance, W K ⁻¹ SIMOsingle input multiple output W_{input} pseudo chip input power, WSISOsingle input multiple output W_{input} sum of input power applied on drivers and actuators, WVCvapor compressor x_o MMEs' outlet vapor quality (mixing point), -ysystem output z position of the zero in the complex planplacement	Ó.	heat transfer rate W	LPC	variable speed cycle (main) liquid pump	
TenderContention of the zero in the complex planCLPWvariable speed water (secondary fluid) liquid pump I_i MME inlet temperature, °CLAliquid accumulator I_o MME outlet temperature, °CLSliquid separator I_1 integral timeMMEmicro-evaporator I_0 dead state temperature, KMMEmicro-evaporator I_1 integral timeMIMOmultiple input multiple output I_0 dead state temperature, °CPIproportional integral controller $I_{water,out}$ outlet water temperature, °CPIproportional integral controller $I_{water,out}$ outlet water temperature, °CPUEpower usage effectiveness u system inputSMVstepper motor valve UA_{cond} condenser overall conductance, W K ⁻¹ SINOsingle input multiple output W_{input} pseudo chip input power, WSISOsingle input single output V_{input} sum of input power applied on drivers and actuators, WVCvapor compressor x_o MMEs' outlet vapor quality (mixing point), -ysystem output z position of the zero in the complex planplacement	Сј Т	condensing temperature °C	LPR	low pressure receiver	
International	Т.	MMF inlet temperature °C	LPW	variable speed water (secondary fluid) liquid pump	
T_0 Initial outlet temperature, CLSliquid separator T_j instantaneous temperature, KMMEmicro-evaporator T_1 integral timeMIMOmultiple input multiple output T_0 dead state temperature, KODPozone depletion $T_{water,int}$ inlet water temperature, °CPIproportional integral controller $T_{water,out}$ outlet water temperature, °CPUEpower usage effectiveness u system inputSMVstepper motor valve UA_{cond} condenser overall conductance, W K ⁻¹ SIMOsingle input multiple output \dot{W}_{cv} energy transfer rate by work, WSISOsingle input single output \dot{W}_{input} sum of input power, WVCvapor compressor W_{input} sum of input power applied on drivers and actuators, WVSCoil-free mini-compressor with variable volumetric displacement y system outputposition of the zero in the complex planplacement		MME nucle temperature °C	LA	liquid accumulator	
If instantaneous temperature, RMMEmicro-evaporator T_1 integral timeMIMOmultiple input multiple output T_0 dead state temperature, KODPozone depletion $T_{water,in}$ inlet water temperature, °CPIproportional integral controller $w_{water,out}$ outlet water temperature, °CPUEpower usage effectiveness u system inputSMVstepper motor valve UA_{cond} condenser overall conductance, W K ⁻¹ SIMOsingle input multiple output \dot{W}_{cv} energy transfer rate by work, WSISOsingle input single output \dot{W}_{input} pseudo chip input power, WVCvapor compressor W_{input} sum of input power applied on drivers and actuators, WVSCoil-free mini-compressor with variable volumetric dis- placement y system outputposition of the zero in the complex planplacement	Т ₀ Т.	instantaneous temperature, K	LS	liquid separator	
IntegratingMillocmultiple input multiple output T_0 dead state temperature, KODPozone depletion $T_{water,in}$ inlet water temperature, °CPIproportional integral controller $T_{water,out}$ outlet water temperature, °CPUEpower usage effectiveness u system inputSMVstepper motor valve UA_{cond} condenser overall conductance, W K ⁻¹ SIMOsingle input multiple output \dot{W}_{cv} energy transfer rate by work, WSISOsingle input single output \dot{W}_{input} pseudo chip input power, WVCvapor compressor W_{input} sum of input power applied on drivers and actuators, WVSCoil-free mini-compressor with variable volumetric displacement y system outputposition of the zero in the complex planplacement	т,	integral time	MME	micro-evaporator	
T_0 dead state temperature, R ODPozone depletion $T_{water,in}$ inlet water temperature, C PIproportional integral controller $T_{water,out}$ outlet water temperature, C PUEpower usage effectiveness u system inputSMVstepper motor valve UA_{cond} condenser overall conductance, $W K^{-1}$ SIMOsingle input multiple output \dot{W}_{cv} energy transfer rate by work, W SISOsingle input single output \dot{W}_{input} pseudo chip input power, W VCvapor compressor W_{input} sum of input power applied on drivers and actuators, W VSCoil-free mini-compressor with variable volumetric dis- placement y system outputposition of the zero in the complex planplacement	1] Т.	dead state temperature K	MIMO	multiple input multiple output	
$T_{water,in}$ inter water temperature, °CPlproportional integral controller $T_{water,out}$ outlet water temperature, °CPUEpower usage effectiveness u system inputSMVstepper motor valve UA_{cond} condenser overall conductance, W K ⁻¹ SIMOsingle input multiple output \dot{W}_{cv} energy transfer rate by work, WSISOsingle input single output \dot{W}_{input} pseudo chip input power, WVCvapor compressor W_{input} sum of input power applied on drivers and actuators, WVSCoil-free mini-compressor with variable volumetric displacement y system outputposition of the zero in the complex planplacement	то Т.	inlet water temperature, °C	ODP	ozone depletion	
<i>Water,out</i> Outce water temperature, cePUEpower usage effectivenessusystem inputSystem inputSMVstepper motor valveUAcondcondenser overall conductance, W K ⁻¹ SIMOsingle input multiple output \dot{W}_{cv} energy transfer rate by work, WSISOsingle input single output \dot{W}_{input} pseudo chip input power, WSISOsingle input single output \dot{W}_{input} sum of input power applied on drivers and actuators, WVCvapor compressor \dot{W}_{input} system outputVCvapor compressor y system outputvitil mixing point), -placement z position of the zero in the complex planvitil mixing pointvitil mixing	Twater,in T	outlet water temperature °C	PI	proportional integral controller	
u System inputSMVstepper motor valve UA_{cond} condenser overall conductance, W K ⁻¹ SIMOsingle input multiple output \dot{W}_{cv} energy transfer rate by work, WSISOsingle input multiple output \dot{W}_{input} pseudo chip input power, WSISOsingle input single output \dot{W}_{input} sum of input power applied on drivers and actuators, WVCvapor compressor W_{input} system outputVCvapor compressor y system outputvisiting point), -placement z position of the zero in the complex planplacement	1 water,out	system input	PUE	power usage effectiveness	
$OricondContentist overall conductance, withSIMOsingle input multiple output\dot{W}_{cv}energy transfer rate by work, WSIMOsingle input multiple output\dot{W}_{input}pseudo chip input power, WSISOsingle input single output\dot{W}_{input}sum of input power applied on drivers and actuators, WVCvapor compressorW_{input}system outputVCvapor compressorysystem outputvisiting point), -placementzposition of the zero in the complex planvisiting point$	μ ΠΔ.	condenser overall conductance WK^{-1}	SMV	stepper motor valve	
W cvEnergy transfer face by work, WSISOsingle input single outputW inputpseudo chip input power, WVCvapor compressorW inputsum of input power applied on drivers and actuators, WVCvapor compressorXoMMEs' outlet vapor quality (mixing point), -VSCoil-free mini-compressor with variable volumetric displacementysystem outputposition of the zero in the complex planplacement	W/	energy transfer rate by work W	SIMO	single input multiple output	
Winputpseudo chip input power, wVCvapor compressorWinputsum of input power applied on drivers and actuators, WVCvapor compressorx_oMMEs' outlet vapor quality (mixing point), -VSCoil-free mini-compressor with variable volumetric displacementysystem outputposition of the zero in the complex planvapor compressor	νν _{cν} M.	proudo chip input power W	SISO	single input single output	
WinputSum of input power applied on drivers and actuators, WVSCoil-free mini-compressor with variable volumetric displacementx_oMMEs' outlet vapor quality (mixing point), -ysystem outputysystem outputposition of the zero in the complex planv	VV input M	sum of input power applied on drivers and actuators W	VC	vapor compressor	
x ₀ initial output years quarty (mixing point), -placementysystem outputzposition of the zero in the complex plan	v v input v	MMEs' outlet vapor quality (mixing point)	VSC	oil-free mini-compressor with variable volumetric dis-	
<i>z</i> position of the zero in the complex plan	Λ ₀	system output		placement	
	у 7	position of the zero in the complex plan			
	۷	position of the zero in the complex plan			

	2.3. Disturbance rejection test	184
	2.4. Unbalanced heat loads test	185
3.	Energy and exergy analysis	186
	3.1. Energy comparison – first law analysis	186
	3.2. Exergy comparison – second law analysis	187
4.	Map of performance	188
5.	Conclusions and remarks	189
	Acknowledgements	190
	References	190

1. Introduction

The worldwide refrigeration advances can be characterized by three important milestones in the history: (i) the production and commercialization of ice in the 19th century, (ii) the artificial cold production through refrigeration systems by absorption and by vapor mechanical compression using methyl ether and ammonia as refrigerant (second half of the 19th century), and (iii) the "boom" in development with the introduction of the refrigerants CFCs (chlorofluorocarbons) in 1930.

Nowadays, thanks to all scientific and technological development of the last two centuries, the refrigeration has spreading into many different domains (electronic, automotive, military, etc.). Consequently, the need for environmentally friendly cooling Download English Version:

https://daneshyari.com/en/article/6691444

Download Persian Version:

https://daneshyari.com/article/6691444

Daneshyari.com