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Abstract

The energy gradient theory is used to study the instability of Taylor—Couette flow between concentric rotating cylinders. This theory has been
proposed in our previous works. In our previous studies, the energy gradient theory was demonstrated to be applicable for wall-bounded parallel
flows. It was found that the critical value of the energy gradient parameter Kmax at turbulent transition is about 370-389 for wall-bounded
parallel flows (which include plane Poiseuille flow, pipe Poiseuille flow and plane Couette flow) below which no turbulence occurs. In this paper,
the detailed derivation for the calculation of the energy gradient parameter in the flow between concentric rotating cylinders is provided. The
calculated results for the critical condition of primary instability (with semi-empirical treatment) are found to be in very good agreement with
the experiments in the literature. A possible mechanism of spiral turbulence generation observed for counter-rotation of two cylinders can also
be explained using the energy gradient theory. The energy gradient theory can serve to relate the condition of transition in Taylor—Couette flow
to that in plane Couette flow. The latter reasonably becomes the limiting case of the former when the radii of cylinders tend to infinity. It is our
contention that the energy gradient theory is possibly fairly universal for analysis of flow instability and turbulent transition, and is found valid for
both pressure and shear driven flows in parallel and rotating flow configurations.
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1. Introduction

Taylor—Couette flow refers to the problem of flow between
two concentric rotating cylinders as shown in Fig. 1 [1-4]. This
terminology was named after the works of G.I. Taylor (1923)
and M. Couette (1890). This problem was first investigated ex-
perimentally by Couette (1890) and Mallock (1896). Couette
observed that the torque needed to rotate the outer cylinder
increased linearly with the rotation speed until a critical rota-
tion speed, after which the torque increased more rapidly. This
change was due to a transition from stable to unstable flow
at the critical rotation speed. Taylor was the first to success-
fully apply linear stability theory to a specific problem, and
succeeded in obtaining an excellent agreement of theory with
experiments for the flow instability between two concentric ro-
tating cylinders [5]. Taylor’s groundbreaking research for this
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Fig. 1. Taylor—Couette flow between concentric rotating cylinders.

problem has been considered as a classical example of flow in-
stability study [6-8].

In the past years, the problem of Taylor—Couette flow has
received renewed interests because of its importance in flow
stability and the fact that it is particularly amenable to rigor-
ous mathematical treatment/analysis due to infinitesimal dis-
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Nomenclature
A, A,, A* coefficients.......... ... i, s7!
A amplitude of the disturbance distance ......... m
B, B,, B* coefficients.......................... mZs—!
D diameter of the pipe for pipe flow............. m
E total mechanical energy of unit volume of
fluid. ... Jm™3
h = Ry — Ry, gap width between the inner cylinder
and the outercylinder ....................... m
H total mechanical energy loss of unit volume of fluid
due to viscosity in streamwise direction.... Jm™>
K function of coordinates (dimensionless)
K. critical value of K,x for instability (dimensionless)
Kinax  maximum of K in the domain (dimensionless)
) half-width of the channel for plane Poiseuille flow
and plane Couette flow ...................... m
n coordinate in transverse direction............. m
p StAtiC PreSSUIE . ..o ovveneeeeenneennn. Nm™?
r TadiUS . oo m
Ro average radius of inner cylinder and outer
cylinder....... .. ... i m
R radius of inner cylinder...................... m
Ry radius of outer cylinder...................... m
Re Reynolds number (dimensionless)
s coordinate in streamwise direction............ m
t 137001 S
T Taylor number (dimensionless)
u velocity component in the main flow
direction. ..., ms™!

uo velocity at the mid-plane for plane Poiseuille flow

(channel flow)........................... ms™!

average velocity in the flow passage . ...... ms~!
v velocity component in the transverse

direction. ............oiiiiiiiiii ms~!
v, = Awg, amplitude of the disturbance of velocity in

transverse direction...................... ms~!
w work done to the unit volumetric fluid by

external ............. il Jm™3
X coordinate in the streamwise direction. . ....... m
y coordinate in the transverse direction.......... m
z coordinate in the spanwise direction........... m
n radius ratio, = Ry/R;
% angular coordinates ................. ... ..., rad
A speed ratio, = wy /w1
u dynamics visCOSity ............cooui.n. Nm—2s
v kinematic viScosity ..................... m?s~!
P density of fluid......................... kgm™3
T shear Stress. ..., Nm~?
w angular velocity of the fluid ............. rads™!
w] angular velocity of the inner cylinder. .. .. rads™!
w2 angular velocity of the outer cylinder-. . ... rads™!
Wla angular velocity of the inner cylinder after

SPlitting . ..o rads™!
W2g angular velocity of the outer cylinder after

splitting .. ....oviiii rads™!
wq frequency of the disturbance ............... 57!

turbances [1-3]. For the stability of an inviscid fluid moving
in concentric layers, Lord Rayleigh [9] used the circulation
variation versus the radius to explain the instability while von
Karman [10] employed the relative roles of centrifugal force
and pressure gradient to interpret the instability initiation. Their
goal was to determine the condition for which a perturbation re-
sulting from an adverse gradient of angular momentum can be
unstable. In his classic paper, Taylor [5] presented a mathemat-
ical stability analysis for viscous flow and compared the results
to laboratory observations. Taylor observed that, for small ratio
of the gap width to the cylinder radii and for a given rotating
speed of outer cylinder, when the rotation speed of the inner
cylinder is low, the flow remains laminar; when the rotation
speed of the inner cylinder exceeds a critical value, instabil-
ity sets in and rows of cellular vortices are developed. When
the rotating speed is increased to an even higher value, the cell
rows break down and a turbulence pattern is produced. He pro-
posed a parameter, now commonly known as the Taylor num-
ber, T = Rez(h /Ro), to characterize this critical condition for
instability. Here, Re is the Reynolds number based on the gap
width () and the rotation speed of the inner cylinder, and Ry
is the mean radius of the inner cylinder and the outer cylinder.
The critical value of the Taylor number for primary instability
is 1708 as obtained from linear analysis. This value agrees well

with his experiments [1-3]. For Taylor—Couette flow, Snyder
has given a semi-empirical equation for the critical condition
from the collected experimental data [11]. Esser and Gross-
mann have also given an analytical equation for the critical
condition by an simple approximation, but a constant in the
equation have to be fixed using the result of linear stability
analysis [12].

However, the problem of Taylor—Couette flow is still far
from completely resolved despite extensive study [11-17]. For
example, the limiting case of Taylor—Couette flow when the ra-
tio of the gap width to the radii tends to zero should agree with
that of plane Couette flow. This includes two possibilities: either
radius is infinite or gap width is very small. Thus, the crite-
rion for instability should reflect this phenomenon. There are
some recent works trying to address this issue to some degree
of success [18-20]. One may observes that Taylor’s criterion is
not appropriate when this limiting case is studied because plane
Couette flow is judged to be always stable due to Taylor num-
ber assuming a null value using Taylor’s criterion. This may be
attributed to the fact that Taylor’s criterion only considered the
effect of centrifugal force, and does not include the kinematic
inertia force. Therefore, it is reckoned to be suitable for low
Re number flows with high curvature. For rotating flow with
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