
ELSEVIER

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Applied kinetics for modeling of reactive hot gas filters

Urs Rhyner, Philip Edinger, Tilman J. Schildhauer*, Serge M.A. Biollaz

Paul Scherrer Institut (PSI), 5232 Villigen PSI, Switzerland

HIGHLIGHTS

- Applied first order kinetics could be developed for a noble metal catalyst.
- Activation energies were determined for steam reforming of tars and sulfur tars.
- Catalytic tar conversion of producer gas from biomass gasification was simulated.
- Possibilities regarding catalyst integration into hot gas filter units were evaluated.

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Article history: Received 21 April 2013 Received in revised form 13 July 2013 Accepted 24 July 2013 Available online 3 September 2013

Keywords: Kinetics Hot gas cleaning Hot gas filtration Desulfurization Biomass

ABSTRACT

First order kinetics were developed based on experimental results of a noble metal catalyst. Activation energies and pre-exponential factors were determined by parameter estimation for steam reforming of tars, sulfur tars and ethene. The formation of ethane and benzene was assumed to be at constant rate depending on the decomposition of ethene and toluene respectively. Further, for steam reforming of methane and water gas shift reaction, the kinetic parameters of Langmuir–Hinshelwood–Hougen–Watson (LHHW) type rate laws including equilibrium term and adsorption of sulfur could be determined.

With the applied kinetics, catalytic tar conversion of producer gas from biomass gasification was simulated. Simulation results at operating temperatures of 850 °C showed significantly higher conversions rates for sulfur free tars, ethene and methane than at 600 °C or 750 °C while the conversion of sulfur tars was less temperature dependent and high at all temperatures.

The simulation results were used to evaluate different possibilities regarding the integration of catalytic material into hot gas filter units with vertical and horizontal filter design. The option of catalytic active filter elements, additional catalytic foam type packing at the inside of the filter element and a monolith at the exit of the filter vessel are feasible assuming the same catalyst material as applied in the reforming catalyst used in this study. These three options can be applied independently of the horizontal or vertical filter design. Placing a catalytic monolith or foam structure at the filter candle exit of a horizontal filter design was found to be unrealistic because the monolith or foam structure would be too long to reach sulfur tar concentrations below 1 ppm V.

© 2013 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +41 (0)56 310 27 06. E-mail address: tilman.schildhauer@psi.ch (T.J. Schildhauer).

Nomenc	clature			
Abbrevia	ationsB-IGFC	Q	volume flow	
	Biomass-Integrated Gasification Fuel Cell System	R	gas constant	
Bio-SNG	Biomass Synthetic Natural Gas	T	temperature	
Ca	Carberry number	X	conversion	
CHP	combined heat and power	a'	specific surface area	
CPO	catalytic partial oxidation	С	concentration	
cpsi	channels per square inch	d_h	hydraulic diameter	
Da _{II}	Dahmköhler number type II	d_o	outer diameter	
DEN	denominator	d_i	inner diameter	
GC/SCD	gas chromatograph sulfur chemiluminescence detector	k [']	rate constant	
GC/FID	gas chromatography with flame ionization detector	K_0	pre-exponential factor	
GHSV	gas hourly space velocity	k_0	pre-exponential factor	
HGC	hot gas cleaning	k_f	mass transfer coefficient	
HGF	hot gas filtration	ĺ	length	
HPD	highest probability density	р	partial pressure	
LHHW	Langmuir-Hinshelwood-Hougen-Watson	r	reaction rate	
LHV	lower heating value	•	Touchon Tute	
LOD	limit of detection	Greek letters		
μGC	micro gas chromatograph		void fraction	
PPI	pores per inch	3	efficiency	
RDS	rate determining step	ϕ	Wheeler–Weisz modulus	
Re	Reynolds number	_	Thiele modulus	
Sh	Sherwood number	φ		
SOFC	solid oxide fuel cells	ho	density	
SRM	steam reforming of methane	τ	tortuosity factor	
WGS	water gas shift			
WGS	water gas simt	-	Superscripts	
		in	inflow	
Latin lett		n	exponent	
4	area	out	outflow	
D_m	molecular diffusion			
D_k	Knudsen diffusion	Subscripts		
D	diffusion	b	bulk	
E_a	activation energy	ch	channel	
F	Molar flow	eq	equilibrium	
ΔH_{Ω}	heat of adsorption	eff	effective	
ΔH_R^0	standard reaction enthalpy	i	species i	
K	adsorption constant	n	norm conditions ($T_n = 273.15 \text{ K}$, $P_n = 100,000 \text{ Pa}$)	
	washcoat thickness (characteristic length)	obs	observed value	
P	pressure	ref	reference	
∆P	pressure drop	101	per volume	

1. Introduction

Renewable energies are supposed to cover a substantial part of the future energy supply. Efficient processes have to be developed regarding environmental impact and costs. Small scale combined heat and power plants (CHPs) can be attractive solutions as part of a decentralized energy supply. A promising approach to reach high electrical efficiencies is the combination of biomass gasification with high temperature fuel cells, such as solid oxide fuel cells (SOFCs). The combination with fuel cells is referred to as "Biomass-Integrated Gasification Fuel Cell System" (B-IGFC). Biomass Synthetic Natural Gas (Bio-SNG) is the name of the gas produced by the combination of biomass gasification and methanation. The main technical challenge is the adjustment of the three main system components gasification, gas processing and fuel cell or methanation.

Hot gas cleaning (HGC) of producer gas derived from biomass gasification is assumed to have the potential of an efficient and economical attractive process. Hot gas filtration (HGF) technology prevents exposing heat exchangers to particle loaded producer gas because the hot gas can be filtered at exit temperatures of

gasifiers. HGF temperatures stay above the condensation temperature of tars and water. This has several advantages. Processing tars above their dew points prevents fouling of equipment due to tar condensations. Because condensation in quenching columns can be avoided by HGF, depending on the gasification process, no steam needs to be added to the producer gas again. Steam content is needed downstream of the filter unit for steam reforming or to prevent soot formation in catalytic process units (e.g. fuel cell). In addition, contaminated liquid of quenching columns can be avoided which improves energy efficiency and reduces environmental impact and costs.

Exploiting high temperatures of producer gases downstream of a gasifier unit avoids heat losses because cooling and reheating of the gas is not needed. Catalytic partial oxidation (CPO) can be applied to heat the producer gas but will reduce the heating value. High temperatures are needed e.g. to catalytically convert sulfur containing hydrocarbons (sulfur tars) and sulfur free tars to lower molecular hydrocarbons and H₂S. Hydrogen sulfide can be adsorbed by a fixed bed of metal oxides completing the desulfurization of the producer gas. Sulfur concentration in the producer gas below 1 ppm V will reduce losses in the performance of nickel

Download English Version:

https://daneshyari.com/en/article/6692024

Download Persian Version:

https://daneshyari.com/article/6692024

<u>Daneshyari.com</u>