
FISEVIER

Contents lists available at SciVerse ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Carbon dioxide capture by single droplet using Selexol, Rectisol and water as absorbents: A theoretical approach

Wei-Hsin Chen a,*, Shu-Mi Chen b, Chen-I Hung b

- ^a Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan, ROC
- ^b Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC

HIGHLIGHTS

- A theoretical method for carbon dioxide capture is developed.
- Selexol, Rectisol, and water are taken into account as absorbents.
- The absorption time is more sensitive to the operating temperature.
- Rectisol has the highest capacity to capture CO₂ among the three absorbents.
- The absorption rate of Rectisol is larger than the others by an order of magnitude.

ARTICLE INFO

Article history: Received 12 January 2013 Received in revised form 16 May 2013 Accepted 18 May 2013

Keywords:
Greenhouse gas
Carbon dioxide (CO₂) capture
Gas absorption
Selexol and Rectisol
Theoretical analysis
Droplet

ABSTRACT

A theoretical method is developed to analyze carbon dioxide capture by a stationary single droplet for evaluating the fundamental mass transfer behavior. In the method, the gas-phase diffusion is predicted using a similarity method and the technique of separation of variable is employed to approach the liquid-phase diffusion. At the interface, a finite difference method is applied to connect the $\rm CO_2$ diffusion between the two phases. The individual capture processes of $\rm CO_2$ by three different absorbents of Selexol, Rectisol and water, are taken into account. The operating pressure and temperature of Selexol and water are in the ranges of 30–60 atm and 303–333 K, respectively, and they are 30–60 atm and 240–270 K for Rectisol. The analysis indicates that an increase in temperature decreases the $\rm CO_2$ capture amount and absorption time by Selexol and Rectisol droplets. The absorption time is more sensitive to the operating temperature than the capture amount. As a result, the $\rm CO_2$ absorption rates by the droplets are increased when the temperature increases. Among the three absorbents, Rectisol has the highest capacity to capture $\rm CO_2$ and its absorption time is in a comparable state to the other two absorbents. This results in that its absorption rate is larger than the others by an order of magnitude.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Burning fossil fuels is the main source of carbon dioxide emissions from anthropogenic activities and it accounts for approximately 95% of the total global annual carbon dioxide emissions [1]. Currently carbon capture and storage (CCS) is considered to be technically feasible at commercial scale to reduce anthropogenic carbon dioxide emissions into the atmosphere [2–6]. A number of carbon dioxide separation methods, such as solution absorption, membrane separation, adsorption separation [7,8], and cryogenics [1,9], can be employed. When one is concerned with solution absorption, it can be classified into chemical absorption and physical absorption. Monoethanolamine (MEA), 2-amino-2-methyl-1-propanol (AMP), aqua ammonia,

dual-alkali, and the proprietary solvent marketed by Mitsubishi Heavy Industries, KS-1, have been employed as chemical solvents [10] for a variety of applications in industries. With regard to physical absorption, the gas treating solvents of Selexol (dimethylether polyethylene glycol), Rectisol (chilled methanol), Fluor (propylene carbonate), and Purisol (N-methyl-2-pyrollidone) are becoming increasingly popular, especially in the application of coal gasification [11].

When physical absorption is practiced, CO_2 is absorbed into a absorbent obeying Henry's law, and the gas capture amount by the absorbent depends on the partial pressure of CO_2 and the temperature of absorbent [12]. In general, CO_2 removal using physical absorption allows consuming energy on a reasonable level for its application in large industrial scale. For example, physical absorption may be a suitable process to remove CO_2 from metallurgical fuel gases, such as blast furnace gases and CO_2 in an absorbent is higher at the higher partial

^{*} Corresponding author. Tel: +886 6 2757575x63600; fax: +886 6 2389940. E-mail address: weihsinchen@gmail.com (W.-H. Chen).

Nomenclature average molar concentration (M) Greek letters D diffusion coefficient (m² s⁻¹) viscosity (cP) n mass diffusion number D_m polar angle Σ_v Н nondimensional Henry's law constant diffusion volume (m³ mol⁻¹) Н Henry's law constant (M atm⁻¹) nondimensional time τ nondimensional solute absorption amount association factor m р pressure (atm) azimuthal angle critical pressure (atm) ω acentric factor p_c R gas constant (=0.082 atm $M^{-1} K^{-1}$) r radial coordinate (m) Subscript r_s aerosol radius (m) air air t time (s) c diffusive characteristic time Τ temperature (K) gas phase or continuous phase g T_s temperature at standard condition (=298.15 K) absorbent i T_c critical temperature (K) 1 liquid phase or discrete phase T_r reduced temperature quasi-saturated state qss nondimensional concentration и saturated state SS χ nondimensional radial coordinate S droplet surface or interface X molar fraction SL saturated liquid molecular weight (g mol⁻¹) Μ total pressure t molar volume of CO₂ at its normal boiling temperature V_i infinity ∞ $(cm^3 mol^{-1})$ vapor phase νp ΔH enthalpy of solution (atm K^{-1})

pressures of the gas and lower ambient temperatures. The required operating conditions of various absorbents are different. For example, the operating pressure and temperature of Selexol are over 30 atm and approximately at 313 K, respectively [14,15]. The operating pressure and temperature of Rectisol are in the ranges of 30–80 atm and 213–263 K, respectively [11,16,17]. These conditions reveal that the operating temperature of Rectisol is much lower than that of Selexol. When $\rm CO_2$ captured by Rectisol (chilled methanol) and water are compared with each other, the former has a higher removal capability, especially at low temperatures. Specifically, the $\rm CO_2$ solubility in methanol at a normal temperature is larger than in water by a factor of approximately 5, and 8–15 times when the temperature of methanol is below 273 K [16].

The integrated gasification combined cycle (IGCC) is a crucial system for the application of CCS [18–20] where the synthesis gas (or syngas) and power are generated. If the produced syngas undergoes water gas shift reactions in association with CCS, carbon free fuel can be produced. In this aspect, the research of CO₂ capture via absorption in IGCC systems has been reported in some studies. Strube and Manfrida [21] focused on two different CO₂ capture configurations using Selexol as a physical solvent. In the first configuration CO₂ and H₂S were individually captured, whereas they were simultaneously captured in the other configuration. They found that the efficiency of CO₂ capture was higher in the individual capture system. Chen and Rubin [22] developed a model to analyze the performances and costs of IGCC plants where a GE quench gasifier along with water gas shift reactors in the presence/absence of a Selexol system for CO₂ capture was employed. They pointed out that the CO₂ avoidance cost was lowest when the total CO₂ removal efficiency was approximately 90%, indicating that it was the optimal CO₂ capture efficiency for the designed plant.

In respect of the application of Rectisol, Li and Robin [23] used Rectisol as an absorbent to study CO_2 removal from syngas in a polygeneration system. Two configurations, including a single-stage wash process and a two-stage wash process, were analyzed

and simulated in Aspen Plus for the process comparison. They reported that the two configurations could fulfill CO₂ separation, but they were different in the aspect of process power and energy demand. Another application of CO₂ removal using Rectisol is the indirect coal liquefaction (ICL). Zhou et al. [17] analyzed CO₂ removal in an ICL process utilizing three absorbents of dimethyl carbonate (DMC), MEA, and Rectisol. They discovered that Rectisol was the most economic option for capturing CO₂ in the ICL process.

Although many studies have been published on CO₂ capture by physical solvents, such as Selexol and Rectisol, the theoretical analyses of CO₂ capture by these absorbents are still absent so far. In industry, a variety of devices, such as Venturi scrubbers, spray towers, stirred tanks, packed columns, and bubble columns, have been adopted to remove CO₂ from flue gases [24–26]. When one is concerned with spray towers, the basic mass transfer unit is CO₂ uptake by single liquid droplets [27]. To evaluate the capture characteristics of CO₂ in spray towers through physical absorption, the mass transfer behavior of CO₂ by three different absorbents, Selexol, Rectisol, and water, in the form of droplet will be explored theoretically. The absorption processes at various operating temperatures and pressures will be examined. Finally, the difference in the capture phenomena of the three absorbents will be addressed.

2. Mathematical formulation

2.1. Physical description

This study focuses on CO₂ capture by a single droplet and three absorbents of Selexol, Rectisol, and water are considered. A theoretical method is developed and the following assumptions are adopted to simplify the physical problem: (1) the droplet is in a quiescent environment; (2) the droplet and its surrounding are isothermal so that no vaporization or condensation occurs; (3) the fluid properties such as the densities and diffusivities of the gas and liquid phases are constant; (4) phase equilibrium prevails at

Download English Version:

https://daneshyari.com/en/article/6692496

Download Persian Version:

https://daneshyari.com/article/6692496

Daneshyari.com