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h i g h l i g h t s

� New method to solve convex and non-convex economic dispatch problems using MsEBBO.
� MsEBBO is able to balance the global exploration and the local exploitation.
� Considering valve-point effects, ramp rate limits, prohibited operating zones.
� An effective repair technique for handling different constraints is proposed.
� The sensitivity of MsEBBO to variations in population size is investigated.
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a b s t r a c t

Economic dispatch (ED) is an important task in power system operation. It is able to decrease the oper-
ating cost, save energy resources, and reduce environmental load. In this paper, a multi-strategy ensem-
ble biogeography-based optimization (MsEBBO) based method for ED problems is proposed. BBO is a
population-based meta-heuristic algorithm inspired by the science of biogeography and mainly consists
of three components: migration model, migration operator, and mutation operator. It has good local
exploitation ability but lacks satisfactory global exploration ability. To keep a proper balance between
exploration and exploitation, MsEBBO has three extensions to BBO’s three components according to
the no free lunch theorem. First, a nonlinear migration model based on sinusoidal curve is employed. Sec-
ond, a backup migration operator through adopting a backup strategy to combine perturb operator and
blended operator is presented. This operator can make the entire population fully exchange or share
information and thus further strengthen the exploitation ability. Finally, both differential mutation and
Lévy local search are embedded as mutation operator for MsEBBO using a similar backup strategy. Gain-
ing from this mutation operator, MsEBBO can be accelerated to escape from local optima and perform
efficient search within global range. Additionally, an effective repair technique is proposed to handle dif-
ferent constraints of ED problems. The performance of MsEBBO is tested on four ED problems with
diverse complexities. Experimental results and comparisons with other recently reported ED solution
methods confirm that MsEBBO is capable of yielding a good balance between exploration and exploita-
tion, and obtaining competitive solution quality. Moreover, the sensitivity of MsEBBO to variations in
population size is investigated as well.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Shortage of energy resources, deterioration of environment, ris-
ing power generation cost, and increasing electric energy demand
necessitate optimal economic dispatch (ED) in today’s competitive
power market. The objective of ED problem of electric power gen-
eration is to schedule the committed generators’ outputs so as to

meet the required load demand at minimum operating cost while
satisfying all generator and system equality and inequality con-
straints [1]. Accurate and intelligent scheduling of the generators
can not only save an enormous amount of revenue but also lead
to massive reduction in greenhouse gas emission and in the rate
of consumption of energy resources. As one of the key functions
of the modern energy management system, ED has been seen as
the kernel of a power system [2]. It is so important that many
researchers have devoted themselves to design efficient and robust
solutions. Up to now, existing methods can be roughly divided into
two categories: conventional methods and modern heuristic meth-
ods. Conventional methods, including linear programming method,
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nonlinear programming method, lambda iteration method, La-
grange relaxation algorithm, etc., require that the incremental gen-
eration cost curves should be piecewise linear and monotonically
increasing. Unfortunately, the practical ED problems exhibit heav-
ily nonlinear and non-convex characteristics in virtue of valve-
point effects, prohibited operating zones, etc. In this context, the
aforementioned conventional methods are easy to be trapped into
local optima or fail to offer adequate solutions at all. Although the
dynamic programming method [3] can solve the ED problems
without imposing any restrictions on the nature of the cost curves,
it suffers from the ‘‘curse of dimensionality’’ resulting in enormous
computational efforts.

As an alternative to the conventional methods, modern heu-
ristic methods have gained much attention and been well devel-
oped for solving ED problems in the past two decades. Compared
with the conventional methods, they have many advantages,
such as global search capability, no requirement of specific do-
main information, no requirement for a differentiable or
continuous objective function, and easy implementation. These
methods include genetic algorithm [4–7], evolutionary
programming [8], neural networks [9], particle swarm optimiza-
tion [10–15], differential evolution [16], artificial bee colony [17],
bacterial foraging [18], biogeography-based optimization [19,20],
etc.

Biogeography-based optimization (BBO), which was introduced
by Simon [21] in 2008, is a kind of optimization technique based on
the equilibrium theory of island biogeography. BBO mainly con-
sists of three components: migration model, migration operator,
and mutation operator. In BBO, problem solutions are represented
as islands. It operates by probabilistically sharing information be-
tween individuals in a population of candidate solutions just like
species migrate back and forth between islands. It uses individuals’
fitness values to calculate their immigration and emigration rates
for each generation, making poor individuals have a high probabil-
ity of accepting new features from good individuals to improve
their quality.

For a population-based evolutionary algorithm, it is well
known that both exploration (i.e. the global search) and
exploitation (i.e. the local search) are crucial. Benefiting from
efficient information sharing mechanism, i.e., migration operator,
BBO has good exploitation ability. However, lacking
satisfactory exploration makes it converge slowly and easy to fall
into a local optimum. According to the no free lunch theorem
[22], no single strategy can consistently perform the best for
every problem throughout the evolution process. To balance
the exploration and the exploitation of BBO, a multi-strategy
ensemble BBO (MsEBBO) is proposed. Five strategies, i.e., sinu-
soidal migration model, perturb operator, blended operator, dif-
ferential mutation, and Lévy local search, are imbedded into
MsEBBO, bringing three extensions to the three aspects of BBO.
The purpose of the ensemble, which is based on the no free
lunch theorem, is efficient use of these five strategies to give full
play to the roles of the migration model, migration operator, and
mutation operator. In addition, since the ED problems have dif-
ferent constraints, such as active power balance constraint, gen-
eration capacity constraints, ramp rate limits, and prohibited
operating zones, therefore, an effective repair approach is
proposed to handle these constraints. The validity of the pro-
posed MsEBBO method has been tested on four different ED
problems.

The rest of this paper is organized as follows. Section 2 de-
scribes the formulation of ED problems. Section 3 gives simple
description of BBO. The proposed method, MsEBBO, and its imple-
mentation for ED problems are elaborated in Sections 4 and 5,
respectively. In Section 6, the MsEBBO is verified on four cases
and Section 7 concludes this paper.

2. Formulation of ED problems

2.1. Objective function

2.1.1. Traditional objective function
The objective function of traditional ED problem can be approx-

imately represented by a single quadratic function:

min cost ¼
XNg

i¼1

FiðPiÞ ð1Þ

FiðPiÞ ¼ ai þ biPi þ ciP
2
i ð2Þ

where cost is the total generation cost (in $/h); Ng is the number of
generators; Pi is the power output of the ith generator (in MW); Fi(-
Pi) is the fuel cost function of the ith generator (in $/h); ai, bi, ci are
fuel cost coefficients of the ith generator.

2.1.2. Objective function with valve-point effects
In practice, the generators with multi-valve stream turbines

have valve-point effects. Modelling valve-point effects on the per-
formance and cost of power generators for ED problems is neces-
sary [23]. The objective function of ED problem with valve-point
effects can be written as follows:

FiðPiÞ ¼ ai þ biPi þ ciP
2
i þ jei þ sinðfi � ðPi;min � PiÞÞj ð3Þ

where ei, fi are non-smooth fuel cost coefficients of the ith generator
with valve-point effects; Pi,min is the minimum power generation
limit of the ith generator (in MW).

2.2. Equality and inequality constraints

The ED problems should satisfy the following equality and
inequality constraints.

2.2.1. Active power balance constraint
The total generated power should be equal to the total system

demand (PD) plus the total transmission network loss (PL):

XNg

i¼1

Pi ¼ PD þ PL ð4Þ

where PL can be calculated using B coefficients as follows:

PL ¼
XNg

i¼1

XNg

j¼1

PiBijPj þ
XNg

i¼1

B0iPi þ B00 ð5Þ

where Bij, B0i, B00 are loss coefficients.

2.2.2. Generation capacity constraints
The power output of each generator should be within its mini-

mum and maximum limits, i.e.,
Pi;min 6 Pi 6 Pi;max ð6Þ

2.2.3. Ramp rate limits
The adjustment of generation output should be in an acceptable

range and is limited by the corresponding ramp rate limits, i.e.,

Pi � Ppr
i 6 URi and Ppr

i � Pi 6 DRi ð7Þ

where Ppr
i is the previous generation output of the ith generator; URi

and DRi are the up-ramp and down-ramp limits of the ith generator,
respectively.

When simultaneously considering the ramp rate limits and gen-
eration capacity constraints, (6) and (7) can be merged and rewrit-
ten as follows:

max Pi;min; P
pr
i � URi

� �
6 Pi 6 min Pi;max; P

pr
i þ DRi

� �
ð8Þ
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