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" A comparison between two ensemble models for wind power forecasting is shown.
" Novel application of COSMO-LEPS ensemble model for wind power forecasts.
" A full verification is performed with real power plant data in complex terrain.
" Higher spatial resolution leads to slightly better wind power probabilistic forecasts.
" A comparison between the ensemble mean and the deterministic model is shown.
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a b s t r a c t

Wind power forecasting (WPF) represents a crucial tool to reduce problems of grid integration and to
facilitate energy trading. By now it is advantageous to associate a deterministic forecast with a probabi-
listic one, in order to give to the end-users information about prediction uncertainty together with a sin-
gle forecast power value for each future time horizon. A comparison between two different ensemble
forecasting models, ECMWF EPS (Ensemble Prediction System in use at the European Centre for Med-
ium-Range Weather Forecasts) and COSMO-LEPS (Limited-area Ensemble Prediction System developed
within COnsortium for Small-scale MOdelling) applied for power forecasts on a real case in Southern Italy
is presented. The approach is based on retrieving meteorological ensemble variables (i.e. wind speed,
wind direction), using them to create a power Probability Density Function (PDF) for each 0–72 h ahead
forecast horizon. A statistical calibration of the ensemble wind speed members based on the use of past
wind speed measurements is explained. The two models are compared using common verification indi-
ces and diagrams. The higher horizontal resolution model (COSMO-LEPS) shows slightly better perfor-
mances, especially for lead times from 27 to 48 h ahead. For longer lead times the increase in
resolution does not seem crucial to obtain better results. A deterministic application using the mean of
each ensemble system is also presented and compared with a higher resolution 0–72 h ahead power fore-
cast based on the ECMWF deterministic model. It is noticeable that, in a deterministic approach, a higher
resolution of the ensemble system can lead to slightly better results that are comparable with those of the
high resolution deterministic model.

� 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Deterministic forecasts of wind production for the next 72 h at a
single wind farm or at the regional level are the main requirement
for end-users. However, for an optimal management of wind
power production and distribution it is important to provide, to-
gether with a deterministic prediction, a probabilistic one. A deter-
ministic forecast consists in a single value for each time in the
future for the variable to be predicted. Different methods for deter-
ministic WPF can be found in Refs. [1,2] and a complete review of
the state of the art is reported in Ref. [3]. At the opposite, probabi-
listic forecasting informs on probabilities for potential future
events. This means providing information about uncertainty in
addition to the commonly provided single-valued power predic-
tion. Prediction intervals include then a practical and visual way
to communicate information about forecast uncertainty to the
end-users.

Recently, different energy-related applications have shown the
advantages of using additional uncertainty information. These pos-
sibilities are well described in e.g. Refs. [3,4] and summarised here-
after. As a first operational example, probabilistic forecasts can be
used to estimate the optimal level of reserves to be allocated in or-
der to compensate wind power variability and limited predictabil-
ity [5]. Another application is related to the trading of energy in
day-ahead electricity markets. It has been shown that, when trad-
ing future wind energy production, using probabilistic wind power
predictions can lead to higher benefits than those obtainable by
using deterministic forecasts alone [6].

In this paper we propose an approach to issue the probability
density function (PDF) of wind power generation for each forecast
horizon (between 0 and 72 h in the future). It is based on trans-
forming a PDF for a meteorological variable, supplied by an ensem-
ble forecast meteorological model, into a PDF for wind power. In
this application, the PDF of the meteorological variable is always
defined by a set of a limited number of forecasts for each lead time,
corresponding to the members of the ensemble meteorological
model. Using this set of forecasts it is possible to define the PDF’s
moments to obtain prediction intervals, quantiles or single-valued
predictions depending upon the specific interest of an end-user.
The main scope of the paper is to suggest an approach on how to
obtain wind power probabilistic forecasts from two commonly
well-known ensemble meteorological models like ECMWF EPS
and COSMO-LEPS. From this point of view, this paper suggests an
original approach to probabilistic WPF considering that other
known methods use different techniques, based for instance on lin-
ear quantile regression [7,8]. As already mentioned, a complete
state of the art of the system can be found in Ref. [3] where none
of the probabilistic methods described is based on ensemble mete-
orological models. In particular, no other applications of COSMO-
LEPS model are known for wind power purposes. The paper aims
also to compare the performances of the two models proposed
by computing the most common skill indices with the power pro-
duction data of an Italian wind farm as a reference. Clearly, using
the ensemble mean data, the method proposed in this work allows

obtaining deterministic forecasts too, with two different horizontal
spatial resolutions. As a consequence, further considerations can be
drawn about the influence of this characteristic on the final wind
power prediction accuracy.

The paper is organised as follows. Section 2 presents the main
characteristics of the two tested ensemble systems. Section 3 intro-
duces the case study considered for the application, and Section 4
explains in details the methodology for the probabilistic WPF. Re-
sults are then gathered and discussed in Sections 5 and 6 along
with the conclusions.

2. Ensemble systems description

2.1. EPS

The ECMWF EPS applies initial conditions perturbation using a
mathematical method based on singular vector decomposition
and stochastic parameterisation to represent model uncertainty
[6]. The approach searches for perturbations that maximise the im-
pact on a 2-day ahead forecast, as measured by the total energy
above the reference hemisphere (at 30� latitude). The impact on
individual weather systems can be either reinforcement or weak-
ening. EPS consists of 50 different evolutions of the desired atmo-
spheric variable, plus a non-perturbed member (the control run,
which only differs from the deterministic run for its lower resolu-
tion). The horizontal resolution of EPS has been increased in Janu-
ary 2010 from T399/T255 (�60 km) to T639/T319 (�32 km) [9].

2.2. COSMO-LEPS

LEPS is created with 16 different integrations of the non-hydro-
static mesoscale model COSMO, which in turn is nested on selected
members of the ECMWF EPS. The so-called ‘‘ensemble-size reduc-
tion’’ process is required to maintain affordable computational
time. The selected global ensemble members provide initial and
boundary conditions to the integrations, and the COSMO model
is then run once for each selected member. The basic principle of
COSMO-LEPS is to combine the advantages of a probabilistic ap-
proach based on the use of a global ensemble system with the de-
tails obtainable from high resolution mesoscale integration.
COSMO-LEPS runs daily with a horizontal resolution of �10 km
and 40 vertical layers, starting at 12 UTC with a forecast range of
132 h [10].

3. Case study

The case study consists in a wind farm located in the province of
Palermo, in Northern Sicily. The orography is fairly complex, with
heights in the area around the plant ranging between 400 and
1800 m above sea level (a.s.l.) The highest peaks nearby the wind
farm are the Madonie mountains, located approximately 20 km
Northeast. The wind farm has 9 Vestas V52 equal turbines. The
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