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a b s t r a c t

Darcy’s flow in a horizontal porous layer with impermeable boundaries is studied. The viscous dissi-
pation effect is taken into account and the local thermal non-equilibrium (LTNE) model for the energy
balance is adopted. The upper boundary is assumed to be perfectly isothermal and the lower boundary is
taken to be thermally insulated. The basic solution is expressed analytically. The case of a perfectly
conducting solid phase is considered. The onset of convective roll instability is investigated by a linear
analysis, with different values of the inter-phase heat transfer parameter. The eigenvalue problem is
solved numerically by a RungeeKutta method.

� 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Viscous dissipation can play an important role in the stability
analysis of basic flow solutions in porous media. In this kind of
problems, a sufficiently intense temperature gradient is needed for
the onset of convective instabilities. In the absence of a thermal
forcing induced by the temperature boundary conditions, the
viscous dissipation effect may be the only possible cause of insta-
bility. For instance, in a horizontal porous layer with an upper
isothermal boundary and a lower adiabatic boundary, a possibly
unstable stratification may be induced by the frictional heating
associated with a basic horizontal throughflow. In the classical
DarcyeBénard problem [1e4], the basic temperature gradient is
forced by the boundary conditions and the viscous dissipation
provides a nonlinear contribution or, more precisely, a second order
term in the perturbations. The latter term, in a linear stability
analysis, is neglected. On the other hand, if we consider a Prats-like
problem [5], a basic horizontal throughflow is imposed and the
viscous dissipation provides also a linear term in the perturbations
and, thus, it may influence the onset conditions of the instability.
Awide work has been done in the last decades for investigating the
role played by the viscous dissipation in the convection processes
occurring within a porous medium [6]. Nakayama and Pop [7]

showed that the effect of viscous dissipation results into a reduc-
tion of the heat transfer rate between a non-isothermal body and
a surrounding fluid saturated porous medium. Nield [8] resolved
a paradox in the modelling of the viscous dissipation term for
convective flows in porous media described through the Dar-
cyeForchheimer momentum transfer law. The effect of viscous
dissipation in the forced convection heat transfer was studied with
reference either to a parallel plate channel [9] or to a circular duct
[10] filled with a porous medium.

The lack of local thermal equilibrium in porous flows may occur
not only in unsteady conditions, but also in a stationary regime.
Conditions of local thermal non-equilibrium (LTNE) [1,11e15]
between the fluid phase and the solid phase may take place, for
instance, when there are strong differences between the thermal
conductivities of the two phases. In these cases, the averages over
a representative elementary volume of the fluid temperature and of
the solid temperaturemay yield different values for the two phases.
Beyond this example, cases of LTNE with small differences between
the thermal conductivities of the two phases may be conceivable.
Thus, the LTNE approach to the description of convective flows is
based on two distinct temperature fields for the fluid phase and for
the solid phase, defined as the solutions of two local energy
balances. These energy balance equations are coupled through
exchange terms modelled by means of a microscopic Newton’s
cooling law between the phases. This model has been applied in an
LTNE analysis of the classical DarcyeBénard problem [16], in the
study of the evolution of a thermal front in a semi-infinite fluid
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saturated porous medium [17], the unsteady injection of a fluid
with a uniform temperature profile in a porous medium [18], the
steady free convection in a two-dimensional square cavity with
side heating [19]. An extension of the DarcyeBénard problem with
LTNE and a non-isotropic permeability model of the porous
medium has been carried out by Malashetty et al. [20]. Recently, an
analysis of the Prats problem [5] under conditions of LTNE has been
performed by Postelnicu [21].

In the present paper, a linear stability analysis of a basic Darcy’s
flow in a horizontal porous layer with impermeable boundaries is
studied. The viscous dissipation term in the energy balance for the
fluid phase is taken into account [22,23]. Two different temperature
fields for the porous solid and for the saturating fluid are assumed
in order to model the LTNE. Two local energy balances, one for each
phase, are introduced. The upper boundary is taken to be perfectly
isothermal and the lower boundary is assumed to be thermally
insulated. In this configuration, the viscous dissipation contribution
provides a source of possible instability. The basic velocity field is
assumed to be stationary and uniform. The basic solution is
expressed analytically and perturbed by means of plane waves in
order to investigate the onset of convective rolls. The special case of
a porous solid with a very high thermal conductivity is examined.
This assumption is a sensible one when the flow through a metallic
foam is considered. The eigenvalue problem thus obtained is solved
by means of a RungeeKutta method. The onset of the instability is
described through the governing dimensionless parameters H and
R, where H is the inter-phase heat transfer parameter and R is the
stability parameter defined as R ¼ GePe2. Here, Ge is the Gebhart
number and Pe is the Péclet number.

2. Mathematical model

We study a horizontal porous layer with impermeable boundary
planes y ¼ 0 and y ¼ L. The y-axis is oriented upward, so that
g ¼ �gey. The lower boundary, y ¼ 0, is thermally insulated, while

the upper boundary y ¼ L is kept at a uniform temperature T0. A
sketch of the porous layer is reported in Fig. 1. Let us assume that:

� Darcy’s law holds;
� the OberbeckeBoussinesq approximation can be applied;
� the viscous dissipation cannot be neglected;
� a condition of LTNE holds.

Then, the governing balance equations can be written as

V$u ¼ 0; (1)

m

K
V�u ¼ rf gbV�

�
Tf � T0

�
ey; (2)

ð1� 4ÞðrcÞs
vTs
vt

¼ ð1� 4ÞksV2Ts þ h
�
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�
; (3)

4ðrcÞf
vTf
vt

þ ðrcÞfu$VTf ¼ 4kfV
2Tf þ

m

K
u$uþ h

�
Ts � Tf

�
; (4)

where the curl operator has been applied to the local momentum
balance equation in order to eliminate the pressure gradient term.

Nomenclature

a dimensionless wave number, Eq. (37)
c heat capacity per unit mass
ey unit vector in the y-direction
F(y,H) dimensionless function, Eq. (41)
g,g gravitational acceleration; modulus of g
Ge Gebhart number, Eq. (8)
h inter-phase heat transfer coefficient
H dimensionless inter-phase heat transfer parameter,

Eq. (8)
k thermal conductivity
L layer thickness
Pe Péclet number, Eq. (18)
~Q dimensionless average heat exchanged, Eq. (25)
R dimensionless parameter, GePe2

T dimensionless temperature
T0 constant temperature
~TfB average temperature of the fluid phase, Eq. (24)
u dimensionless velocity, (u,v,w)
U dimensionless velocity disturbance, (U,V,W)
x dimensionless position vector, (x,y,z)

Greek Symbols
a thermal diffusivity
b thermal expansion coefficient
3 dimensionless perturbation parameter
h dimensionless parameter, Eq. (48)
q dimensionless fluid phase temperature disturbance
Q;F;J dimensionless disturbance amplitudes, Eq. (37)
L dimensionless parameter, Eq. (8)
m dynamic viscosity
x dimensionless similarity variable, Eq. (49)
r density
4 porosity
f dimensionless solid phase temperature disturbance
c inclination angle, Eq. (15)
j dimensionless streamfunction disturbance
u dimensionless angular frequency, Eq. (37)
U dimensionless parameter, Eq. (8)

Superscript, subscripts
e dimensional quantity
^ rescaled dimensionless quantities, Eq. (51)
B basic flow
cr critical value
f fluid phase
s solid phase
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Fig. 1. Drawing of the porous layer and of the basic flow.
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