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a b s t r a c t

The steady laminar boundary layer flow along a vertical stationary plate with convective surface
boundary condition is investigated in this paper. The heat transfer coefficient is considered either con-
stant or variable along the plate and the problem is either non-similar or similar. The results are obtained
with the direct numerical solution of the governing equations. The problem is governed by Prandtl
number and a convective parameter and the influence of these parameters on the results are presented
in tables and figures. There are differences in the results between the non-similar and similar case at low
values of the convective parameter but as this parameter increases the differences decrease and the flow
tends to the classical natural convection along a vertical isothermal plate.

� 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Aziz [3] was probably the first who treated the convective heat
transfer on a horizontal plate in a constant free stream (Blasius
flow) proving that a similarity solution is possible if the convective
heat transfer of the fluid heating the plate on its lower surface is
proportional to x�1/2. If the convective heat transfer coefficient is
constant then the problem does not admit a similarity solution.

The appearance of the above paper stimulated a large number of
subsequent papers concerning different boundary layer problems
with convective boundary conditions. See for example boundary
layer flow with entropy generation [5], in power-law fluids [10], in
micropolar fluids [12], with variable suction [9], in nanofluids [4],
with variable fluid properties [22], in MHD flows [6], with heat and
mass transfer [8] and with exact solution [11] to mention just a few
of them.

All works mentioned above concern a convective heat transfer
coefficient as a function x in order that the problems accept simi-
larity solutions. However, the assumption of a heat transfer coef-
ficient varying along the plate as a function of x is not realistic and
very difficult to be obtained in practice. For that reason, it could be
said, that the aboveworks have only theoretical value. In contrast to
this hypothesis Merkin and Pop [13] presented a non-similar so-
lution of the Blasius flow with constant heat transfer coefficient. In

the present work we treat the classical natural convection along a
vertical stationary plate in a calm fluid either with constant heat
transfer coefficient or with heat transfer coefficient variable along
the plate as a function of x�1/4. In the first case the problem is non-
similar whereas in the second case we have a similarity solution. It
is reminded here that the first approximate solutions to the prob-
lem of natural convection along a vertical isothermal plate was
given by Schuh in 1948 [23] whereas Ostrach [15] numerically
obtained the solution for the Pr range from 0.01 to 1000. The so-
lutions given by Ostrach are included in many heat transfer and
fluid mechanics textbooks, (see for example Refs. [25]; page 324,
[24]; page 274).

2. Problem definition and solution procedure

Consider the flow along a vertical semi-infinite plate with u and
v denoting respectively the velocity components in the x and y
directions, where x is the coordinate along the plate and y is the
coordinate perpendicular to x. For a steady, two-dimensional flow,
the boundary layer equations are

continuity equation :
vu
vx

þ vv

vy
¼ 0 (1)

momentum equation : u
vu
vx

þ v
vu
vy

¼ y
v2u
vy2

þ gbðT � TNÞ (2)
E-mail address: apantokr@civil.duth.gr.

Contents lists available at ScienceDirect

International Journal of Thermal Sciences

journal homepage: www.elsevier .com/locate/ i j ts

1290-0729/$ e see front matter � 2013 Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.ijthermalsci.2013.09.006

International Journal of Thermal Sciences 76 (2014) 221e224

Delta:1_given name
mailto:apantokr@civil.duth.gr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijthermalsci.2013.09.006&domain=pdf
www.sciencedirect.com/science/journal/12900729
http://www.elsevier.com/locate/ijts
http://dx.doi.org/10.1016/j.ijthermalsci.2013.09.006
http://dx.doi.org/10.1016/j.ijthermalsci.2013.09.006
http://dx.doi.org/10.1016/j.ijthermalsci.2013.09.006


energy equation : u
vT
vx

þ v
vT
vy

¼ a
v2T
vy2

(3)

The boundary conditions are:

at y ¼ 0 : u ¼ 0; v ¼ 0; �k
vTwðxÞ
vy

¼ hðxÞ
�
Tf � TwðxÞ

�
(4)

as y/N u ¼ 0; T ¼ TN (5)

where y is the fluid kinematic viscosity, a is the fluid thermal
diffusivity, k is the fluid thermal conductivity, T is the fluid tem-
perature, Tw is the plate temperature (variable) and TN is the
ambient fluid temperature. It is assumed that the plate is heated by
convection from a fluid with constant temperature Tf with a heat
transfer coefficient h.

The Equations (1)e(3) represent a two-dimensional parabolic
problem. Such a flow has a predominant velocity in the streamwise
coordinate which in our case is the direction along the plate. In this
type of flow convection always dominates the diffusion in the
streamwise direction. Furthermore, no reverse flow is acceptable in
the predominant direction. The solution of this problem in the
present work is obtained using a finite difference algorithm as
described by Patankar [21]. In order to obtain a complete form of
both the temperature and velocity profile at the same cross section
we used a nonuniform lateral grid. Dy takes small values near the
surface (dense grid points near the surface) and increases along y. A
total of 500 lateral grid cells were used. It is known that the
boundary layer thickness changes along x. For that reason the
calculation domain must always be at least equal to or wider than
the boundary layer thickness. In each case we tried to have a
calculation domain wider than the real boundary layer thickness.
This has been done by trial and error. If the calculation domain was
thin the velocity and temperature profiles were truncated. In this
case we used another wider calculation domain in order to capture
the entire velocity and temperature profiles. The parabolic (space
marching) solution procedure is described analytically in the text-
book of Patankar [21] which “remains to this day a model of
simplicity and clarity and one of the most coherent explications of
the finite volume technique ever written” [1]. The above solution
procedure is implicit and unconditionally stable ([25]; page 276),
has been used extensively in the literature and has been included in
fluid mechanics and heat transfer textbooks (see Refs. [2]; p. 364,
[25]; p. 271; and [14]; p. 124). The method has been used suc-
cessfully in a series of papers by the present author [16e20].

3. Results and discussion

The problem is governed by two non-dimensional parameters,
the Prandtl number and the convective parameter which are
defined as

Pr ¼ y

a
(6)

Nc ¼ hx
k
Gr�1=4

X (7)

where GrX is the classical Grashof number defined as

GrX ¼
gb

�
Tf � TN

�
x3

y2
(8)

Following the work of Aziz and Khan [4] we found that if the
heat transfer coefficient h is proportional to x�1/4, Nc becomes

independent of x and a true similarity is realized. If h in Equation (7)
is constant the convective parameter Nc is variable along the plate
and the problem is non-similar.

Important parameters for this problem are the non-dimensional
wall shear stress and the non-dimensional wall heat transfer
defined, according to classical natural convection along a vertical
isothermal plate ([25]; page 324, [24]; page 274) as

f 00ð0Þ ¼ x2�
21=2y

�Gr�3=4
X

�
vu
vy

�
y¼0

(9)

w0ð0Þ ¼ � x�
Tf � TN

�
�
GrX
4

��1=4�vT
vy

�
y¼0

(10)

In addition the following relations are valid

w ¼ T � TN
Tf � TN

(11)

f 0 ¼ ux
2y

Gr�1=2
X (12)

h ¼ y
x

�
GrX
4

�1=4
(13)

In Fig. 1 the influence of the number of lateral grid points on the
velocity profile for Pr ¼ 1 and Nc ¼ 1 is shown for the non-similar
problem. According to Equation (7) the quantity Nc can be
considered as a non-dimensional distance along the plate. It is seen
that as the number of grid points increases the velocity profiles
become better and for m ¼ 50 the velocity profile is close to the
final profile. The 500 lateral grid points, used in the present work,
cover all the cases treated and thus the results of the present work
are grid independent. The corresponding grid tests for the tem-
perature profile are shown in Fig. 2 where it is seen that the 500
lateral grid points give also a very accurate temperature profile.
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Fig. 1. Grid independent test for velocity profile for Pr ¼ 1 at the non-dimensional
distance Nc ¼ 1 along the plate. m is the number of grid points across the boundary
layer.
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