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h i g h l i g h t s

" We model the optimal design and dispatch of a distributed generation system.
" Our model includes performance characteristics often not considered in simpler models.
" A simpler model underestimates the optimal system capacity compared to our model.

a r t i c l e i n f o

Article history:
Received 4 April 2012
Received in revised form 12 July 2012
Accepted 20 July 2012
Available online 13 September 2012

Keywords:
Optimization
Mixed-integer nonlinear programming
Distributed generation
Combined heat and power
Fuel cells
Building energy

a b s t r a c t

The distributed generation (DG) of combined heat and power (CHP) for commercial buildings is gaining
increased interest, yet real-world installations remain limited. This lack of implementation is due, in part,
to the challenging economics associated with volatile utility pricing and potentially high system capital
costs. Energy technology application analyses are also faced with insufficient knowledge regarding how
to appropriately design (i.e., configure and size) and dispatch (i.e., operate) an integrated CHP system.
Existing research efforts to determine a minimum-cost-system design and dispatch do not consider many
dynamic performance characteristics of generation and storage technologies. Consequently, we present a
mixed-integer nonlinear programming (MINLP) model that prescribes a globally minimum cost system
design and dispatch, and that includes off-design hardware performance characteristics for CHP and
energy storage that are simplified or not considered in other models. Specifically, we model the maxi-
mum turn-down, start up, ramping, and part-load efficiency of power generation technologies, and the
time-varying temperature of thermal storage technologies. The consideration of these characteristics
can be important in applications for which system capacity, building demand, and/or utility guidelines
dictate that the dispatch schedule of the devices varies over time. We demonstrate the impact of neglect-
ing system dynamics by comparing the solution prescribed by a simpler, linear model with that of our
MINLP for a case study consisting of a large hotel, located in southern Wisconsin, retrofitted with
solid-oxide fuel cells (SOFCs) and a hot water storage tank. The simpler model overestimates the SOFC
operational costs and, consequently, underestimates the optimal SOFC capacity by 15%.

Published by Elsevier Ltd.

1. Introduction

The on-site generation of heat and power, commonly referred to
as distributed generation (DG), is gaining interest in the commer-
cial building sector. A DG system can consist of renewable or non-
renewable sources of power generation (e.g., photovoltaic (PV)
cells, fuel cells, and other prime movers), electric energy storage
(e.g., batteries), heat generation (e.g., heat exchangers and boilers),
and/or thermal energy storage (e.g., hot water). For some markets,
volatile utility pricing and high technology capital costs reduce the

economic viability of DG. However, even in the most economically
favorable markets, commercial building application remain limited
to uninterrupted or backup power systems. Barriers to widespread
adoption of DG at the commercial scale (< 1 MW) can be due to
high grid interconnection fees and permitting wait times, as well
as the perceived risk in installing new technologies. The lack of
DG implementation is also due to the inadequacy of existing tools
to determine the optimal configuration, size, and operation of com-
plex, combined heat and power (CHP) systems. We refer to this
task of determining the lowest cost mix, capacity, and operational
schedule of DG technologies as the design and dispatch problem.

Existing efforts (see [1]) to solve the design and dispatch
problem apply techniques that include simulation, evolutionary
algorithms (e.g., genetic algorithms), or more traditional
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mathematical programming algorithms (e.g., simplex or branch-
and-bound). The leading simulation model in the literature is the
Hybrid Optimization Model for Electric Renewables (HOMER)
(see [2–5]). HOMER enumerates DG system designs that have suf-
ficient capacity to meet the annual demand of a building of inter-
est, calculates the hourly dispatch associated with each system
design, and rank orders the designs based on life-cycle cost. How-
ever, the dispatch strategy is pre-specified by the user, rather than
determined by the model. The inability to optimally select the sys-
tem dispatch is particularly troublesome when the system design
includes storage, because the model cannot consider the demand
in future time periods when choosing the dispatch in the current
time period. Thus, as with any simulation model (see also [6–9]),
the results are inherently descriptive rather than prescriptive.

Prescriptive models of the design and dispatch problem include
variables for the configuration, capacity, and time-varying opera-
tion of the technologies in the system. The values of these variables
are determined by solving instances of the model with an appro-
priate algorithm. Evolutionary algorithms (EAs) are applied in a
number of studies to determine the dispatch of an existing DG sys-
tem (see [10,11]) or the design and dispatch of a new system (see
[12–14]). Although these studies are capable of prescribing a sys-
tem design and/or dispatch, the EA approach is fundamentally dif-
ferent than that of more traditional algorithms. In general, search
heuristics such as EAs do not include methods for bounding the
optimal objective function value and terminate based solely on de-
creased improvement in the objective. Thus, there is often no way
of determining whether the solution which results from the algo-
rithm is close to globally (or even locally) optimal. By contrast,
models which apply simplex or branch-and-bound algorithms
(see [15–19]) can prescribe a provable, globally optimal system de-
sign and dispatch.

Foremost among the global optimization models in the DG liter-
ature is the Distributed Energy Resources Customer Adoption Mod-
el (DER-CAM) (see [20–23]). DER-CAM is a mixed-integer linear
programming (MILP) model that is solved using the branch-and-
bound algorithm to determine the number of DG technologies to
acquire, along with their operating levels over time, to meet the
power and heating demands of a building at minimum capital,
operational, and environmental (i.e., emissions) cost. In contrast
to other existing research, DER-CAM addresses both the design
and dispatch of a DG system, applies a provable global optimiza-
tion approach, includes both economic and environmental costs
in its objective, and considers the generation and storage of both
power and heat using renewable and nonrenewable technologies.
Given all of these attributes, DER-CAM is the most flexible of the
design and dispatch models cited thus far. But, DER-CAM does
not consider many performance characteristics that constrain the
dynamic (i.e., off-design) operation of DG technologies. Simplifying
these characteristics permits a linear formulation of the problem
with few integer variable restrictions. Thus, even large instances
(i.e., instances possessing long time horizons) of the design and
dispatch problem can be solved with relative ease. However, insuf-
ficiently modeling the off-design system performance could result
in the prescription of unrealistic system dispatch schedules and,
ultimately, in the recommendation of a suboptimal system design.

Pruitt et al. [24] address the implementation of higher model
fidelity by presenting a mixed-integer nonlinear programming
(MINLP) model, referred to as ðPÞ, that prescribes a globally mini-
mum cost system design and dispatch, and that includes dynamic1

performance characteristics of power and heat generation and storage
that are simplified or not considered in models such as DER-CAM. In

addition to typical constraints on demand, capacity, and inventory
balance, ðPÞmodels the maximum turn-down, start-up fuel consump-
tion, ramping capability, and part-load electric efficiency of power
generation technologies, and models the time-varying temperature
of thermal storage technologies. The consideration of these dynamic
performance characteristics can be particularly important when the
technologies are operated in a load-following (i.e., time-varying),
rather than baseload (i.e., fixed), manner. In some applications, the
DG system configuration and capacity, the building’s energy demands,
and/or the local utility’s rates, policies, and procedures may require a
time-varying dispatch from the DG technologies. In these instances,
ðPÞ captures the real-world operation of the technologies more
accurately than models which simplify or do not consider dynamic
performance characteristics.

The objectives of this work are to: (i) evaluate the differences in
optimal design and dispatch when using simplified or higher-fidel-
ity models, (ii) develop insight into when higher-fidelity models
are more appropriate to employ than simplified models, and (iii)
provide a higher-fidelity model for enabling more detailed engi-
neering analyses of integrated DG systems in building applications.

In this paper, we demonstrate that neglecting system dynamics
can result in inaccurate prescriptions of system operation and, sub-
sequently, in suboptimal DG investment. In order to demonstrate
this, we present a simplified version of ðPÞ, called ðSÞ, that does
not include maximum turn-down, start up, ramping, or part-load
efficiency, and that models thermal storage in terms of energy
inventory rather than temperature. The formulation of ðSÞ as a rep-
resentative model that does not consider system dynamics permits
both qualitative and quantitative comparisons with ðPÞ. In so
doing, we are able to highlight the scenarios for which a more de-
tailed model, such as ðPÞ, is preferable to a simpler model, such as
ðSÞ. The remainder of the paper is organized as follows: Section 2
discusses the specific dynamic performance characteristics consid-
ered in our research and their importance given alternative operat-
ing strategies. Section 3 provides the MINLP formulation of ðPÞ, the
MILP formulation of ðSÞ, and concludes with an examination of the
qualitative differences between ðPÞ and ðSÞ. Section 4 demon-
strates the numerical impact of the differences between the two
formulations with a case study of a representative commercial
building application. Finally, Section 5 concludes the paper.

2. System operating strategies

For the DG systems examined in this research, we consider so-
lid-oxide fuel cells (SOFCs) as the primary source of on-site power
generation. Thus, one of the goals of solving specific instances of
ðPÞ is to determine the appropriate operating strategy (e.g., base-
load versus load-following) for the SOFC system. Accurately mod-
eling the operation of DG technologies, such as fuel cells, can
require the consideration of a number of performance characteris-
tics. Fuel cells convert the chemical energy of a fuel, such as natural
gas, directly into electrical energy through electrochemical reac-
tions. In this way, the performance and technological characteris-
tics of fuel cells resemble those of batteries more than those of
conventional, fossil fuel-based combustion generators. However,
unlike batteries, fuel cells do not require charging and can continue
to produce power as long as they are supplied with reactants (such
as fuel and air). The materials of construction employed by SOFCs,
in particular, demand high operating temperatures to achieve
practical power generating efficiencies. Because SOFCs require a
significant amount of time to reach operating temperature
(i.e., maximum turn-down), their ability to depart standby mode
(i.e., start up) and change power output between time periods
(i.e., ramp) is limited (see [25]). Additionally, the ratio of their
electric energy output to fuel energy input (i.e., electric efficiency)

1 The usage of dynamic in this paper refers to both the off-design (or part-load)
performance of the SOFC system and the time-dependent thermodynamic state of the
water in the storage tank.
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