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a b s t r a c t

The main mechanisms of transition of buoyancy-induced flows in the horizontal annulus between
circular cylinders are reviewed, based on the available literature. Both experimental and theoretical
studies are considered. The different scenarios for the evolution of the flow regimes and temperature
patterns are tracked, for increasing values of the Rayleigh number, Ra. The occurrence of various
instability and bifurcative phenomena is pointed out, and linked to other relevant parameters, such as
the radius ratio R and the Prandtl number, Pr. Although most of the relevant literature is on 2D cases, the
effect of the third dimension is considered as far as possible. Studies on the influence of the eccentricity
of the inner cylinder on the laminar flow and the thermal asset are also reviewed. Finally, open questions
and topics for future research are hinted at.

� 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Buoyancy-induced flows in enclosures may be very complex in
nature, and highly unpredictable in terms of thermal effectiveness.
This is partially inherent in the bi-directional interaction between
the flow and temperature fields, but also derives from the sensi-
tivity of the thermal-flow regimes to the geometric and thermal
configuration of the system.

Heat transfer by natural convection is characterised by relatively
low heat transfer rates, and a possible way for enhancement is the
exploitation of transitional regimes. These are time-varying in
nature, and could therefore be much more efficient than steady-
state regimes in terms of heat transfer performance. The prediction
and control of transitional buoyant flows are however increasingly
difficult as the Rayleigh number increases, due to the wide spec-
trum of flows potentially arising from successive bifurcations.

The importance of buoyancy-induced flow transitions as
a research topic goes far beyond the field of thermal sciences. In fact,
it is deeply entwined with the history of chaos theory, since meteo-
rologist Edward N. Lorenz [1] witnessed for the first time the

occurrence of deterministic, but nevertheless unpredictable behav-
iour arising from the numerical analysis of a dynamical system. Such
a systemrepresenteda simplifiedmodelof theflowwithinan infinite
layer of fluid heated from below, and consisted of three equations,
representing a truncation of a spectral expansion of the equations of
natural convection. His analysis proved that complex chaotic
dynamics could be reproduced even by a low-dimensional system,
and later observations [2] confirmed that analogous dynamics can be
recovered in the study of real cases, even though the Lorenzmodel is
not at all representative of a real problem.

So far, most of the research effort in this field has been dedicated
to the study of buoyant flow instabilities and bifurcations in basic
geometries. RayleigheBénard convection in a horizontal layer of
fluid heated from below and the side-heated enclosure with rect-
angular cross section and adiabatic top and bottom walls are the
most widely studied cases. Some of the main results concerning
these cases are summarized in a number of review papers, among
which those of Yang [2] and Le Quéré [3] are very noteworthy.

A third fundamental case of confined free convection is the flow
originating in the region between two horizontal cylinders with
differential heating. The case is commonly referred to as the hori-
zontal annulus. In the lastdecades, a considerableamountofworkhas
beenpublished on the stability and bifurcations of natural convection
flows in horizontal annuli, but a comprehensive review of the results
achieved so far is still lacking. This survey intends to partially fill this
gap, by providing an outlook on the mechanisms of transition, in
order to sketch the guidelines for developing future research.
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2. Theoretical background

Under the Boussinesq approximation, the dimensionless gov-
erning equations for natural convection read as follows:

V$u ¼ 0 (1)

vu
vt

þ u$Vu ¼ �VP þ 1

Gr
1
2

V2u� bgT (2)

vT
vt

þ u$VT ¼ 1

Gr
1
2Pr

V2T (3)

From the point of view of mathematical physics, the system (1)e(3)
represents an autonomous, non-linear, dissipative, dynamical
system, whose trajectories belong to an N-dimensional space. The
control parameter of the system is the Grashof number, Gr, or,
equivalently, the Rayleigh number Ra ¼ GrPr. Other parameters
that influence the system behaviour are the Prandtl number Pr, the
geometrical ratios of the domain, and the thermal boundary
conditions.

When reviewing works on confined buoyant flows, several
types of flow regimes are encountered, of which a qualitative
classification can be given. It is useful to introduce a simple set of
acronyms and abbreviations, in order to facilitate the description of
such flows and the explanation of the global patterns of transition
associated with them. The notation by Gollub and Benson [4] is
followed and properly extended where necessary [5]:

PD indicates a pseudo-diffusive flow [6,7]. Pseudo-diffusive flow
regimes consist of steady state, very weak, shear-driven circula-
tions, induced by a diffusion-dominated temperature field.

S denotes a generic steady-state convective flow, normally
organized in a number of circulation cells.

P denotes a time-dependent, periodic flow, represented by
a closed orbit in phase space, and typically originated by a Hopf
bifurcation of a S-type flow.

Pn indicates another periodic state, emerging after a series of
period doublings of a P-type flow. Its corresponding attractor is
again a closed orbit.

L indicates a periodic flow with a number of frequencies locked,
by twos, to a rational ratio (phase locking). In this case, the flow
regime is represented by a closed orbit on a torus.

QPn denotes a quasi-periodic flow, characterised by an oscilla-
tion presenting n independent, incommensurable frequencies. In
phase space, the trajectory associated with a quasi-periodic flow
lies on the surface of a torus.

I denotes an intermittent flow regime, i.e. a regime characterised
by alternating periodic phases and chaotic “bursts”, whose repre-
sentation in phase space is a strange attractor.

N indicates a non-periodic, chaotic flow, represented by
a strange attractor as well.

Details of transition vary greatly from one case to another;
however, a number of established routes to chaos are found to be
common to many types of dissipative dynamical systems, whose
validity is supported by a strong body of theory [8].

One of the most recurrent routes to chaos in enclosed natural
convection is the RuelleeTakens scenario. This scenario consists in
the birth of a strange attractor through three Hopf bifurcations: the
first one turns a fixed point into a periodic orbit; through the
second one, the orbit bifurcates in a quasi-periodic flow; the third
one sees the birth of a third incommensurate frequency. If the
leading parameter is increased further, a strange attractor is likely
to appear. According to the above classification, the RuelleeTakens
scenario can be represented by the following sequence:
S/P/QP2/QP3/N.

Another common route to chaos is the so-called period-
doubling or Feigenbaum route. In this scenario, a stable periodic
orbit triggers an infinite sequence of period-doubling bifurcations,
leading to chaos, which can be represented as:
S/P/P2/P4/./N. This cascade of period-doubling bifurca-
tions is such that:

lim
k/N

jmk � mk�1j
jmkþ1 � mkj

¼ dF ¼ 4:6642016. (4)

where m is the control parameter, and dF is the Feigenbaum
constant. This is a universal constant, in that it can be detected on
any occasion an infinite period-doubling cascade occurs.

Nomenclature

a wave number
A aspect ratio
Ay ¼ Ly=H axial aspect ratio
e eccentricity [m]
g gravitational acceleration [m/s2]
bg gravity unit vector
Gr ¼ gbDTL3ref =n

2 Grashof number
h convective heat transfer coefficient [W/

(m2 K)]
H gap width [m]
k thermal conductivity [W/(m K)]
Ly axial length [m]
Nu ¼ hLref =k Nusselt number
P dimensionless piezometric pressure
Pr ¼ n=a Prandtl number
r radius [m]
R ¼ ro=ri radius ratio
Ra ¼ GrPr Rayleigh number
t dimensionless time
T dimensionless temperature

DT driving temperature difference ðTH � TCÞ [K]
u dimensionless velocity vector

Greek symbols
a thermal diffusivity [m2/s]
b thermal expansion coefficient [1/K]
dF Feigenbaum constant

3¼e/H dimensionless eccentricity
m general leading parameter of a dynamical system
n kinematic viscosity [m2/s]
4 eccentricity angle
q angular coordinate

Subscripts
c critical
C cold
H hot, based on height
i inner
o outer, oscillatory
ref reference
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