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1. Introduction

Classical phenomenological fracture mechanics provides
several fracture criteria to predict the onset of crack propaga-
tion. These criteria are widely used for both brittle and ductile
materials. When using these criteria, certain quantities are
computed analytically or numerically (J – integral, JI; stress
intensity factor, KI; energy release rate, GI, or crack tip opening
displacement, CTOD). They characterize the mechanical fields
in front of the crack and at the critical moment they must be
equal to their critical values. These values, in turn, must be
determined experimentally according to certain national or
international standards. These quantities characterize the
fracture toughness and strongly depend on the size and shape
of specimens or structural members. The fracture toughness is
measured according to standards and provides conservative
estimates of the critical loading conditions. Several research
results have introduced corrections to classical fracture

toughness parameters measured according to such standards,
e.g., [1–4]. These corrections reduce the conservative nature
and simultaneously provide more economical estimations.
However, another approach and philosophy can be used in
predicting the fracture of structural elements. This approach is
called the local approach, and Beremin [5] is typically
considered the initiator of a series of research efforts based
on the associated concepts. The concept of Weibull stress and
probability of fracture was developed by French group e.g., [6–
9] (review publication), and by Dodds' group, e.g., [10–13].
Another approach, which focuses on the damage evolution of
the material microstructure, is typically called the GTN model.
This approach was initiated by Gurson [14] and extended by
Chu and Needleman [15] to add the term concerning the void
nucleation process, by Tvergaard and Needleman [16] to
incorporate void growth and coalescence, by Leblond [17] to
incorporate strain hardening, and by Pardoen and Hutchinson
[18] to incorporate the void shape into the analysis. Benzerga
et al. [19] extended the theory to accommodate plastic
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a b s t r a c t

Constitutive equations were calibrated to improve their application in assessing a stress

field in front of a crack under the conditions of large strains and stress triaxiality. The Bai–

Wierzbicki method was adopted, and certain changes and new terms were introduced to

incorporate material softening. Five shapes of specimens were tested to cover a wide range

of stress triaxiality conditions and Lode factors. Tests were performed at three different

temperatures, namely, +20 8C, –20 8C, and –50 8C, and on three different materials obtained

by three different heat treatments of S355JR steel.
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anisotropy, and Nahshon and Hutchinson [20], along with
Nielsen and Tvergaard [21], introduced the Lode parameter.
The third important group of research reports that furthered
local analysis methods includes Bao and Wierzbicki's study
[22] of the concept of the critical strain to fracture, the Mohr–
Coulomb hypothesis and the invariants of the stress tensor
and deviator of the stress tensor. Several reports have been
published in this area [23–26]. In the methods developed in
these three groups of studies, one must know the stress and
strain distributions locally within the loaded element. This
knowledge becomes essential when the damage evolution is
discussed under the conditions of plastic deformation and
large strains. Such a situation is met in front of the crack
within an elastic–plastic material. The local theory of fracture
incorporates the distribution of opening stress in front of the
crack to compute the Weibull stress. In the GTN model, the
process of void nucleation – growth – coalescence is directly
taken into account using certain postulated functions, but the
yield function must be properly calibrated. In the Bai–
Wierzbicki formula to compute the critical strain, certain
quantities must be computed by calibrating the yield function.

In this paper, we discuss the process of uniaxial stress–
strain curve calibration in detail, for the strain range both
before and after the maximum of the stress–strain curve. Since
the accumulated effective plastic strains in front of the crack
may reach the level of tens or hundreds of percent, a proper
approximation and extrapolation of the true stress–logarith-
mic strain (TS–LS) curves is necessary, and additional
corrections are required to adjust the numerical results to
match the experimental data.

Here, we use the approach of Bai–Wierzbicki [24] with
certain adjustments. Thus, the stress–strain curve contains
the functions of invariants of the stress tensor and deviator of
the stress tensor. The stress–strain curves are calibrated using
five different specimen geometries and loading conditions and
three materials tested at three temperatures.

2. General model

Bai and Wierzbicki postulated the following formula to
compute the yield stress [24]:

syld ¼ s ep
� �

1�ch h�h0ð Þ� �
csu þ caxu �csu

� �
g� gmþ1

m þ 1

� �� 	
(1)

This equation determines the shape of the yield surface,
where sðepÞ is the function between the effective stress and the
effective accumulated plastic strain ep; h is the triaxiality
coefficient (h ¼ sm=s, where sm ¼ 1=3 s11 þ s22 þ s33ð Þ ¼ 1=3I, I is
the first invariant of the stress tensor, s ¼ ffiffiffiffiffiffiffi

3J2
p

is the effective
stress, and J2 is the second invariant of the stress tensor
deviator); h0 is a reference value of the triaxiality coefficient
and h0 = 1/3 for the uniaxial tensile test. The g function
represents a curve drawn along the deviatoric surface between
the contours defined by the Huber–von Mises and Tresca
criteria in the principal stress space. The g function satisfies
the inequality 0 ≤ g ≤ 1, and g = 0 for plane strain or pure shear,
and g = 1 for axial symmetry. Bai and Wierzbicki postulated
that the g function takes the following form:

g ¼ cos p=6ð Þ
1�cos p=6ð Þ

1
cos u�p=6ð Þ�1
� 	

¼ 6:464 sec u�p=6ð Þ�1½ � (2)

where u is the Lode angle, which is a function of the third
invariant of the stress deviator,

cos 3uð Þ ¼ r
se

� �3

¼ j ¼ 27
2

J3
s3
e

(3)

r ¼ 27
2
det sij
� �� 	1=3

¼ 27
2

s1�smð Þ s2�smð Þ s3�smð Þ
� 	1=3

(4)

where sij is the stress tensor deviator. The Lode angle must
satisfy the inequality 0 ≤ u ≤ p/3. The normalized Lode angle u

(�1�u�1) is also used in the analysis.

u ¼ 1� 6u
p

¼ 1� 2
p
arccosj (5)

Another definition of the Lode parameter can be used:

L ¼ � 2sII�sI�sIII

sI�sIII
(6)

where sI and sIII are the maximum and minimum principal
stresses, respectively.

The following relationship exists between j and L:

j ¼ L
9�L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 3
� �3q (7)

The shape of the function (1) is not the only one proposed
by Wierzbicki and co-workers. To our knowledge, no research-
ers have attempted to determine a universal function
independent of specimen geometry. This problem is also
discussed in the present paper. In Eq. (1), the quantity caxu is
defined as follows:

caxu ¼ ctu for u � 0
ccu for u < 0

(8)

Eq. (1) contains four parameters to be determined: ctu, ccu, csu
and m. The term containing the m parameter is added to make
the yield surface smooth and differentiable with respect to the
Lode angle u in the neighbourhood of g = 1. These parameters
must be determined experimentally. However, at least one of
them is equal to unity. If sðepÞ is found through a uniaxial
tensile test using cylindrical specimens, then ctu ¼ 1. If a
uniaxial compression test is performed, then ccu ¼ 1, and in the
case of a shear test, csu ¼ 1. All four parameters can be selected
in such a way that one obtains either the Huber–von Mises or
Tresca yield surface.

The effective stress is computed as follows:

s ¼
ffiffiffiffiffiffiffi
3J2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2sijsij

q
¼

¼ 1
2

s11�s22ð Þ2 þ s11�s33ð Þ2 þ s22�s33ð Þ2
h i

þ 3 s2
12 þ s2

13 þ s2
23

� �� �0:5

(9)

The plastic effective strain rate can be computed as follows:
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