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1. Introduction

Recently, phosphorene synthesized from the layered black
phosphorus bulk materials [1–3] has attracted the attention of
research community due to its applications in different fields
[4–8]. To take the advantages of this material, its physical
properties should be clearly identified. In this regard, the
mechanical characteristics of phosphorene nanosheets and
nanotubes have been investigated in several papers.

First-principles calculations were employed by Hu et al. [9]
to examine the mechanical and electronic properties of
monolayer and bilayer phosphorene nanosheets. When a
uniaxial tensile strain was applied along a zigzag direction,
they obtained a specific negative Poisson's ratio for the pucker
distance of each layer in the bilayer phosphorene. The

sustainable tensile strains of armchair and zigzag monolayer
phosphorene nanosheets were respectively computed as 27%
and 30% by Wei and Peng [10]. Employing first-principles
calculations, Ding et al. [11] investigated the mechanical and
electronic behaviors of phosphorene nanosheets. They
observed prominent anisotropic elastic characteristics with
a large elastic strain limit of 0.31 for armchair nanosheet and
0.22 for zigzag ones. Sorkin and Zhang [12] studied the
deformation and failure behavior of phosphorene nanoribbons
under uniaxial tensile strain. Employing the uniaxial stress
along an arbitrary direction, the anisotropic electro-mechani-
cal properties of phosphorene nanosheets were observed by
Wang et al. [13]. Molecular dynamics (MD) simulations were
employed by Wang et al. [14] to study the effect of mechanical
strain on single-layer black phosphorus nanoresonators at
different temperatures. Based on their results, the intrinsic
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a b s t r a c t

A finite element model based upon the density functional theory is developed to investigate

the vibrational characteristics of armchair phosphorene nanotubes. To this end, the P–P

bonds are simulated by beam elements whose elastic properties are obtained from the

analogy of molecular and structural mechanics. The effects of nanotube length, diameter

and boundary conditions on the frequencies of armchair phosphorene nanotubes are

evaluated. It is shown that the effect of nanotube radius on its natural frequency is

weakened by increasing the nanotube aspect ratio. Comparing the first ten frequencies

of armchair phosphorene nanotubes with different diameters, it is observed that the effect

of diameter on the vibrational behavior of phosphorene nanotubes is more pronounced at

higher modes.
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puckered configuration of phosphorene nanosheets leads to a
highly anisotropic behavior for their resonant frequencies.
Sha et al. [15] studied the effect of temperature on the
mechanical properties of the phosphorene nanosheets.
They indicated that the mechanical properties of the zigzag
phosphorenes are more sensitive to the temperature change
than their armchair counterparts. Investigating the effect
of atomic vacancy on the mechanical properties of the
phosphorene showed that 2% concentration of randomly
distributed mono-vacancies can lead to decreasing fracture
strength by about 40% [16]. A large structural flexibility
along the armchair direction was observed for the phosphor-
ene nanosheets allowing them to have large curvatures [17].
Liu et al. [18] used MD simulations to study the fracture
mechanism and energy release rate of phosphorene
nanosheets. It was shown that the energy release rate is
not affected by the strain rate significantly. Studying the
mechanical properties of phosphorene nanotubes (PNTs),
Sorkin and Zhang [19] revealed that as the phosphorene
nanosheet, a strong anisotropic behavior is observed for the
PNTs. Using DFT simulations, Sorkin and Zhang [20] studied
the elastic properties of defect-free phosphorene nanorib-
bons. The influence of intrinsic strain on the structural
stability and mechanical properties of PNTs was evaluated by
Liao et al. [21] using MD simulations.

In this paper, a DFT-based FE method is used to study the
vibrational behavior of armchair PNTs. To accomplish this
aim, beam elements are used to simulate the structure of
armchair PNTs. The effects of diameter and aspect ratio
(length/diameter) of PNTs on their natural frequencies are
studied. Besides, the nanotubes are considered under different
boundary conditions.

2. Methodology

2.1. Molecular structural model

The total potential energy of a molecular system is stated
as [22]:

Utotal ¼
X

Ur þ
X

Uu þ
X

Uf þ
X

Uv þ
X

UvdW (1)

where Ur, Uu, Uf, Uv and UvdW are the bonding, bond stretching,
bond angle bending, dihedral angle torsion, out-of plane tor-
sion and nonbonding van der Waals energies, respectively. By
merging the torsional terms, third and fourth terms, into a
single term and accepting the harmonic form of the bonding
energies, one can write [23,24]:

Ur ¼ 1
2
krðr�r0Þ2 ¼ 1

2
krðDrÞ2 (2)
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2
kuðu�u0Þ2 ¼ 1
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Ut ¼ Uf þ Uv ¼ 1
2
ktðDfÞ2 (4)

wwherekr,kuandktaretheforceconstantsofthebondstretching,
bending,andout-of-planetorsion,respectively.Moreover,Dr,Du
and Df are changes of the bond length, the bond angle, and the
dihedralanglefromtheinitialposition,respectively.Ifthebonds
aresubstitutedbybeamelementsinthestructuralmechanics,the
correspondingstrainenergiesareexpressedas:
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where UA, UM and UT are strain energies of beam due to pure
tension N, pure bending moment M and torque T. In the
above equations, E, L, A, I, J and G are Young's modulus,
length, cross-sectional area, moment of inertia, polar
moment of inertia and shear modulus of beam elements.
Besides, DL, a and Db are length variation, bending angle and
torsion angle, respectively. The following relations are
obtained by comparing the equivalent energy terms in
Eqs. (2)–(4) and Eqs. (5)–(7):

EA
L

¼ kr
EI
L
¼ ku

GJ
L

¼ kt

(8)

To obtain the diameter, d, Young's modulus, E, and shear
modulus, G of the beam elements, the cross section of
the beams are considered as circle (A = pd2/4, I = pd4/64 and
J = pd4/32). Therefore [25,26],

d ¼ 4

ffiffiffiffiffi
ku
kr

s
; E ¼ k2r L

4pku
; G ¼ k2r ktL

8pk2u
(9)

Considering YS, v and D as Young's modulus,
Poisson's ratio and flexural rigidity of the nanostructures,

Nomenclature

YS surface Young's modulus of the nanostructure
y Poisson's ratio of the nanostructure
D flexural rigidity of the nanostructure
d diameter of the beam element
E Young's modulus of the beam element
G shear modulus of the beam element
L length of the beam element
A cross-sectional area of the beam element
I moment of inertia of the beam element
J polar moment of inertia of the beam element
kt force constant of bonds against out-of-plane

torsion
ku force constant of bonds against bending
kr force constant of bonds against stretching
a, b, c unit cell constants
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