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1. Introduction

In contrast to the traditional layered composites in which the
mechanical properties vary from layer to layer with sharp
discontinues, functionally graded materials (FGMs) have
gradually varying properties with specific alternation the
micromechanical characteristics. The rapid advances in

technology make FGM nanostructures as building blocks of
potential designs and applications of nano electro mechanical
systems (NEMS) [1–5].

In order to have a predictability and reliability design for
these miniaturized systems, it is necessary to take small scale
effects into account. To capture the small scale effects at
nanoscale using continuum-based modeling, several noncon-
ventional continuum theories have been introduced in which
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a b s t r a c t

The purpose of the current study is to address the nonlinear buckling and postbuckling

response of nanoscaled cylindrical shells made of functionally graded material (FGM) under

hydrostatic pressure aiming to investigate the sensitivity to the initial geometric imperfec-

tion in the presence of surface effects and thermal environments. According to a power law

distribution, the material properties of the FGM nanoshell are considered change through

the shell thickness. Also, the change in the position of physical neutral plane corresponding

to different volume fractions is taken into account to eliminate the stretching-bending

coupling terms. In order to acquire the size effect qualitatively, the well-known Gurtin-

Murdoch elasticity theory is incorporated within the framework of the classical shell theory.

Using the variational approach, the non-classical governing equations are displayed and

deduced to boundary layer type ones. Afterwards, explicit expressions for the size-depen-

dent radial postbuckling equilibrium paths of imperfect FGM nanoshells are proposed with

the aid of a perturbation-based solution methodology. It is displayed that by moving from

the ceramic phase to the metal one, the critical buckling pressure decreases, but the

postbuckling stiffness increases, because in contrast to the ceramic phase, the surface

modulus and residual surface stress associated with the metal phase have the same sign.
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new length-scale parameters have been considered in the
constitutive equations. There are a number of investigations
on prediction of size-dependent behavior of nanostructures
based upon different non-classical continuum theories. Ansari
et al. [6] examined the free vibration response of single-layered
graphene sheets using nonlocal continuum elasticity. Ansari
and Sahmani [7] used nonlocal elasticity theory within the
framework of different beam theories to predict natural
frequencies of single-walled carbon nanotubes. Thai and Vo
[8] implemented nonlocal elasticity theory into a sinusoidal
shear deformation beam theory for mechanical behaviors of
nanobeams. Ansari and Sahmani [9] anticipated the biaxial
buckling behavior of single-layered graphene sheets based on
various nonlocal plate models. Wang and Li [10] studied the
nonlinear primary resonance of nanobeams on the basis of
Eringen's nonlocal elasticity. Sahmani et al. [11] used strain
gradient elasticity theory for nonlinear free vibrations of FGM
microbeams. El-Borgi et al. [12] analyzed the size-dependent
free and forced vibration responses of FGM nanobeams resting
on elastic foundation. Simsek [13] obtained the nonlinear
frequencies of FGM nanobeams based upon nonlocal strain
gradient elasticity theory. Tang et al. [14] investigated the
viscoelastic wave propagation in embedded carbon nanotubes
using the combination of nonlocal and strain gradient
elasticity theories.

Among various non-classical continuum theories, surface
elasticity theory incorporates the effect of surface free energy
as one of the most important size effects. The surface free
energy effect is particularly significant in nanoscaled struc-
tures due to their high surface to volume ratio. Motivated by
this issue, Gurtin and Murdoch [15,16] introduced a very
elegant mathematical modeling within the framework of
continuum elasticity to consider the effect of surface free
energy in the classical continuum mechanics. On the basis of
Gurtin-Murdoch elasticity theory, the free surfaces of struc-
ture are simulated as layers, the thickness of which is zero and
the material properties of which are different from those of
the bulk of structure. Later, for better understanding of
mechanical response of nanostructures, several researchers
employed Gurtin-Murdoch elasticity theory to analyze the
static and dynamic behaviors of various structures at
nanoscale.

For instance, Jing et al. [17] used surface elasticity theory in
conjunction with contact atomic force microscope to measure
the elastic properties of nanowires made of silver. Jammes
et al. [18] employed the surface elasticity theory to analyze the
multiple interacting circular nano-inhomogeneities and
nano-pores located in one of two joined, dissimilar isotropic
elastic half-planes. Mogilevskaya et al. [19] studied the effects
of surface elasticity and surface tension on the transverse
overall behavior of unidirectional nano-scale fiber-reinforced
composites described by the Gurtin-Murdoch elasticity
theory. Based upon surface elasticity theory, Wang et al.
[20] investigated the influences of surface tension and the
residual stress in the bulk induced by the surface tension on
the elastic properties of nanostructures. Intarit et al. [21]
presented analytical solutions for shear and opening disloca-
tions in an elastic half-plane with surface stresses by using
the Gurtin–Murdoch continuum theory of elastic material
surfaces. Ansari and Sahmani [22] developed non-classical

beam models through implementation of surface elasticity
theory into the various classical beam theories to analyze
bending and buckling behavior of nanobeams. They also
examined the effect of surface free energy on the free
vibration response of rectangular nanoplates corresponding
to different plate theories [23]. Nazemnezhad et al. [24]
predicted the nonlinear free vibration of nanobeams with
considering surface effects including surface elasticity,
tension and density using Euler–Bernoulli beam theory in
conjunction with the von Kármán geometric nonlinearity.
Shaat et al. [25] investigated the bending behavior of ultra-
thin functionally graded plates in the presence of the surface
free energy effect. Malekzadeh and Shojaee [26] studied
simultaneously the surface and nonlocal effects on the
nonlinear flexural free vibrations of elastically supported
non-uniform cross section nanobeams. On the basis of an
efficient numerical solution procedure, Sahmani et al. [27]
predicted the surface free energy effect on the free vibration
characteristics of postbuckled third-order shear deformable
nanobeams. Also, Sahmani et al. [28] used surface elasticity
theory to analyze the nonlinear forced vibration behavior of
third-order shear deformable nanobeams with various
boundary conditions. Wang and Wang [29] proposed a general
model for nano-cantilever switches with consideration of
surface stress, nonlinear curvature, the location and length of
the fixed electrode. Mohebshahedin and Farrokhabadi [30]
demonstrated the influence of surface layer on the instability
of NEMS tweezers and cantilevers fabricated from conductive
cylindrical nanowires. Sahmani et al. [31] studied the free
vibration response in both the prebuckling and postbuckling
regimes for third-order shear deformable nanobeams made of
FG material incorporating surface free energy effect. Runga-
mornrat et al. [32] presented the analysis of an infinite, rigid-
based, elastic layer under the action of axisymmetric surface
loads, taking the surface energy effects into account. Fan and
Xu [33] examined the Saint-Venant end effect in the
nanotubes via a continuum mechanics with consideration
of surface elasticity.

Herein, the surface effects are evaluated on the developed
non-classical imperfection sensitive shell model for the
postbuckling characteristics of FGM cylindrical nanoshells
under hydrostatic pressure and thermal environments. By
considering the difference between the positions of the
physical neutral plane and the geometric middle plane, the
terms of stretching-bending coupling are removed. The size-
dependent governing equations are constructed using the
principle of minimum potential energy and then they are
deduced to boundary layer-type ones. Finally, based on a
singular perturbation solution methodology, explicit expres-
sions for the size-dependent postbuckling equilibrium paths
are proposed.

2. Non-classical FGM shell model based on
surface elasticity

As illustrated in Fig. 1, an FGM cylindrical nanoshell with the
length L, thickness h, and mid-surface radius R made from a
mixture of silicon as the ceramic phase and aluminum as the
metal phase is considered. The nanoshell is assumed to be
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