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1. Introduction

Recently, industrial engineering structures such as bridges,
aerospace structures, engines, buildings, become more and
more large-scale and complex, which exhibit multiscale
behaviors. Therefore, one needs to investigate the localizing
phenomena caused by internal flaws (cracks, holes or

inclusions) in order to ensure the reliability of the structures
[1,2]. It can be observed that, minor cracks in the vicinity of a
major crack tip have significant influence on the major crack
propagation, as they can result in either crack shielding or
crack amplification, which should be taken into account to
predict the fatigue life of the components.

For the numerical simulation of the localizing phenomena
in single-scale analysis, an extreme locally refined mesh is
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a b s t r a c t

The present work aims at saving computational cost of multiscale simulation on major

crack/minor crack interaction problems. The multiscale extended finite element method

(MsXFEM) used for the numerical simulation is developed on multiscale projection tech-

nique which enables different scale decomposition, and transition of field variables between

different scales. Both macroscale and microscale problems are solved independently and

alternatively, in the framework of XFEM. The improvement made in this paper is to employ

corrected XFEM on the macroscale level, so that a more accurate boundary condition can be

obtained for the microscale problem. The modification leads to a reduced necessary

microscale domain size, meanwhile a solution of higher accuracy and enhanced conver-

gence rate can be achieved. The numerical examples of minor cracks near a major one are

studied, which show that the effect of minor cracks on major crack can be efficiently

captured.
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required, which inevitably lead to high computational cost and
poorly conditioned equations. Therefore, multiscale methods
were introduced since it can dramatically reduce the compu-
tational cost, which offer great promise in modeling localizing
phenomenon such as local nonlinearity or stress concentra-
tion caused by microscopic flaws in complex structures. After
finite element method (FEM) been widely applied to numerical
simulation of large scale structures, the origin idea of multi-
scale method was to enhance the performance of FEM over the
entire region or some subdomain. Hirai et al. [3] proposed a
family of so-called zooming methods, using refined finite
element meshes for the local regions containing stress
concentrations. In a superposition multiscale approach [4],
the global and local parts were modeled independently by
different meshes, and then superimposed to provide a final
solution which satisfies the compatibility equations. However,
this method might present computational weakness such as
robustness or low convergence rate. An alternative approach is
the multiple scale expansion technique based on homogeniza-
tion of field variables at each scale [5,6]. This method is very
useful to provide a global solution for the bulk of the structure,
yet fail to produce a local solution accurately for the localizing
phenomena. Other concepts of multiscale methods include
variational multiscale method [7], domain decomposition
method [8,9], and concurrent methods [10,11] etc. Among
these methods, the multiscale projection method introduced
by Loehnert et al. [12,13] offers great advantages over others
since it produces accurate solution for both macroscale and
microscale problems and it is ease to implement in large
programming platform. In this method, transition of field
variables (displacement, stress strain) between different scales
can be achieved, which make the multiscale projection method
ideal for the macro/micro cracks interaction simulation.

When the evolving cracks are numerically simulated, it is
preferred that, the mesh is independent of the physic
geometry and the initial mesh remains unchanged when
the crack propagates. Various methods have been developed
to overcome the difficulty caused by remeshing, such as the
boundary element method [14,15], the mesh free method
[16,17], the numerical manifold method [18] and the extended
finite element method (XFEM) [19–21]. Among them, XFEM is
highly competitive and widely used, since it enable the mesh
totally independent of the physic discontinuities with mini-
mal added degrees of freedom. In XFEM, the discontinuities
and stress singularity are modeled by locally enriching the
classical FEM approximation with additional functions.

The XFEM have already been successfully applied to
multiple minor discontinuities at a single scale, for example,
large array of cracks by Budyn et al. [22], microcrack/
macrocrack simulation by Guidault et al. [23], and multiple
minor flaws in functionally graded materials by Singh et al.
[24]. Lately, a number of researchers have conjugated the
multiscale method with XFEM for minor flaws simulation. For
example, based on LATIN method, Guidault et al. [25] proposed
a multiscale XFEM for crack propagation, in which only in
vicinity of the discontinuity the mesh is refined. Bosco et al.
[26] developed a fully coupled micro-macro solution strategy
where the solution procedure on the macroscopic level is
based on XFEM. Loehnert et al. [13] conducted major crack and
minor cracks interplay simulation by multiscale projection in

conjugation with standard XFEM, the role of microfield in the
macrofield can be emphasized, the involved parameters
influencing the results were investigated. It is concluded in
his paper that, it is important to determine an adequate large
domain size of the microstructure. In standard XFEM, the
blending elements which blend the locally enriched part and
the other major part compromise the overall convergence and
local accuracy. Special treatments [27,28] have been proposed
to overcome such arisen problem. The most effective among
them is corrected XFEM proposed by Fries [29], in which a ramp
function is introduced into the enrichment functions of the
blending elements, the modification achieves optimal conver-
gence and high accuracy. Therefore, the purpose of the present
paper is to modify the multiscale projection method by using
corrected XFEM on the macroscopic level, in order to reduce
the necessary domain size of microstructure, and enhance the
convergence rate.

This paper is organized as follows. In Section 2, the
framework of corrected XFEM is described, in which, the
modification of standard XFEM is detailed. In Section 3, the
traditional multiscale projection method is presented, which
involves the transition of field variables at different scales and
separation of the structural details. In Section 4, first a beam
containing a single major crack is simulated to demonstrate
the efficiency and accuracy of the modified method, then a
family of cases as major crack in presence of minor cracks are
investigated and compared with previous researches. Section
5 gives the conclusions and an outlook to future work.

2. Formulation of standard and corrected
XFEM

2.1. Displacement approximation of standard XFEM

In XFEM, the major continuum part is modeled by FE
approximation, while the local discontinuity is modeled by
additional enrichment functions which are constructed by the
means of the partition unity theory. For a 2-D body containing
cracks, the displacement approximation of standard XFEM [30]
can be written as:

ûðxÞ ¼
X
j 2 A

NjðxÞuj þ
X
k 2 M

NkðxÞ½HðxÞ�HðxkÞ�ak

þ
X
l 2 I

NlðxÞ
X4
a¼1

baðxÞ�baðxlÞ½ �bal (1)

As marked in Fig. 1, A is the set of all nodes in the mesh; M is
the set of nodes belonging to those split elements which
intersects with the crack; I is the set of nodes belonging to the
tip element which contains the crack tip. If a node belongs both
to split element, and tip element, then, the node belongs to I
set.

In Eq. (1), uj is the classical finite element displacement;
Nj(x), Nk(x) and Nl(x) are standard FE shape functions, which
technically do not need to be identical. H(x) is the Heaviside
function used to model the discontinuity in displacement,
which takes +1 on one side of the crack surface and �1 on the
other side. ak are the nodal unknowns enriched on the M set of
nodes. ba(x) (a = 1–4) are four asymptotic crack tip branch
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