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a b s t r a c t

In many dynamic heat transfer situations, the temperature at the heated boundary is not directly
measurable and can be obtained by solving an inverse heat conduction problem (IHCP) based on
measured temperature or/and heat flux at the accessible boundary. In this study, IHCP in a two-
dimensional rectangular object is solved by using the conjugate gradient method (CGM) with temper-
ature and heat flux measured at the boundary opposite to the heated boundary. The inverse problem is
formulated in such a way that the heat flux at heated boundary is chosen as the unknown function to be
recovered, and the temperature at the heated boundary is computed as a byproduct of the IHCP solution.
The measurement data, i.e., the temperature and heat flux at the opposite boundary, are obtained by
numerically solving a direct problem where the heated boundary of the object is subjected to spatially
and temporally varying heat flux. The robustness of the formulated IHCP algorithm is tested for different
profiles of heat fluxes along with different random errors of the measured heat flux at the opposite
boundary. The effects of the uncertainties of the thermophysical properties and back-surface tempera-
ture measurement on inverse solutions are also examined.

� 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

In some dynamic heat transfer situations, the surface heat flux
and temperature histories of a solid cannot be measured directly
with thermal sensors. For example, during surface heat treatment
processes, the treated surface may be unsuitable for attaching
a sensor in order to avoid intervention of the thermal
manufacturing process. Similar situations can also be found during
the reentry of space vehicles where the heated surface tempera-
ture is so high that a thermal sensor can be destroyed by ablation.
Under such circumstances, the heated (front) surface temperature
can be determined indirectly by solving an inverse heat conduc-
tion problem (IHCP) [1,2] based on the transient temperature and/
or heat flux measured on the opposite (back) surface.

Solutions of IHCPs are very challenging because they are
mathematically classified as ill-posed. Although some analytical
solutions are available for the solution of IHCPs (e.g., [3,4]), the
majority of the solution method relies on the numerical approach,
in which the inverse problem is re-stated as a least-squares mini-
mization problem over the whole-time domain or in sequential
time intervals. A regularization parameter is introduced to stabilize

the inverse solutions [5]. However, the optimal value of the regu-
larization parameter is often difficult to acquire. Alifanov’s iterative
regularization technique [6] is an alternative approach for tradi-
tional regularization scheme. In this technique, the regularization
procedure is performed during the iterative processes and thus the
determination of the optimal regularization parameter is not
required.

The conjugate gradient method (CGM) belongs to the category
of iterative regularization techniques. It can improve the conver-
gence rate of inverse estimation by choosing the direction of
descent as the linear combination of the gradient direction at
current iteration with the direction of descent at previous iteration
[7]. Due to its excellent self-adjusting, global convergence property,
the CGM has been extensively used to solve multidimensional and
non-linear IHCPs (e.g., [8e12]). However, most of the CGM algo-
rithms in the past were based on temperature measurement data
(e.g., [13e18]) since the temperature can be measured with less
uncertainty compared to the heat flux [19e22]. Littlework has been
done for the inverse numerical algorithm using heat flux
measurement data. Furthermore, in heat treatment and aerospace
applications, the surface heat flux may be delivered in a periodic
way in time and with a non-uniform profile in space due to the
spinning or moving of the target. This may pose extra challenges on
the inverse solutions, so it is necessary to determine which CGM
formulation is more appropriate for such applications.
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Recently, the authors proposed a robust and error-insensitive 1-
D IHCP formulation to reconstruct the front-surface heating
condition with back-surface measurement data [23]. It has been
shown that the most accurate solution can be obtained by choosing
the front-surface heat flux as the unknown function and using the
temperature measurement data as the boundary condition at back
surface while the heat flux measurement data are employed in the
objective function. However, the work presented in [23] is only for
1-D geometry. The objective of this paper is to extend the previous
1-D algorithm to a 2-D formulation and check its performance in
estimating the surface heating transients caused by spatially and
temporally varying boundary conditions.

2. Model description

To illustrate the methodology of the inverse heat transfer
algorithm employed in this study, a two-dimensional rectangular
object, as shown in Fig. 1, is considered. Initially, the object is
uniformly at temperature T0 and is subjected to a high-intensity
heat flux qsur with any arbitrary profiles (Fig. 1 uses Gaussian
profile as an example, and w is 1/e radius) from t ¼ 0þ at its front
boundary (x ¼ 0). The purpose of this study is to demonstrate the
effectiveness and accuracy of the proposed IHCP formulation in
reconstructing the observed heat flux q1ðy; tÞ and temperature
T1ðy; tÞ at the front boundary of this 2-D target with temperature-
dependent thermophysical properties, based on the measured
temperature and heat flux at the back boundary (x ¼ Lx). Due to
the fact that temperature measurement contains much less errors
compared to the heat flux measurement [19e22], the back-
boundary temperature YTLðy; tÞ is used as the boundary condition
and the back-boundary heat flux YqLðy; tÞ is employed in the
objective function.

2.1. Direct problem

The direct problem can be expressed as follows:
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¼ 0 ðadiabaticÞ or T ¼ Tb ðfirst kind B:C:Þ

for y ¼ 0 and Ly;0 � x � Lx; t > 0 (5)

Nomenclature

C volume specific heat, J/(m3 K)
dkðy; tÞ direction of descent at iteration k, which is sometimes

expressed in vector form dk

f frequency of the heat flux at heated boundary, Hz
h convection heat transfer coefficient, W/(m2 K)
im total number of heat flux sensors
k thermal conductivity, W/(m K)
Lx, Ly object lengths in x and y directions, respectively, m
q heat flux, W/m2

qsur heat flux at heated boundary, W/m2

q1ðy; tÞ observed heat flux at heated boundary which is
sometimes expressed in vector form q1, W/m2

q½Lx; y; t; q1� computed heat flux at opposite boundary, W/m2

Dq½Lx; y; t; dk� heat flux variation, which is sometimes simplified
as DqðdkÞ, when the boundary heat flux is subjected to
a perturbation Dq1ðy; tÞ ¼ dkðy; tÞ;W=m2

S objective function
VS½qk1� gradient direction of objective functional at iteration k
t time, s
Dt time step, s
T temperature, K
Tb boundary temperature, K
TN ambient temperature, K
T1ðy; tÞ front surface temperature, K
DT½Lx; y; t;dk� temperature variation, which is sometimes

simplified as DT , when the boundary heat flux is
perturbation is Dq1ðy; tÞ ¼ dkðy; tÞ, K

w 1/e radius of Gaussian-profile boundary heat flux, m

x, y spatial coordinate variables, m
Yðy; tÞ measurement data (temperature or heat flux) with

errors at opposite boundary obtained by numerical
simulations

YqLexactðy; tÞ measurement heat flux without errors at opposite
boundary obtained by numerical simulations, W/m2

YqLðy; tÞ measurement heat flux at opposite boundary, W/m2

YTLðy; tÞ measurement temperature at opposite boundary, K

Greek symbols
a surface absorptivity
bk search step size at iteration level k
c tolerance used to stop the CGM iteration procedure
d Dirac delta function
3 surface emissivity
f standard deviation of heat flux or temperature

measurements
gk conjugate coefficient at iteration level k
lðx; y; tÞ Lagrange multiplier
s StefaneBoltzmann constant, s ¼ 5.67 � 10�8 W/

(m2 K4)
u a random variable having a normal distribution with

zero mean and unitary standard deviation

Superscripts
k iteration level

Subscripts
0 initial
f final

Ly

y

Lx

Front boundary 

Back boundary 

w

Fig. 1. Physical model.
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