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A B S T R A C T

It is widely accepted that the prediction of building energy performance is strongly related to the occupancy
parameters. Currently, existing buildings and laboratories are the main sources for collecting occupancy related
data. However, using such data for predicting the energy consumption of future buildings can create a con-
siderable amount of uncertainties. Recent studies show that Immersive Virtual Environments (IVEs) have the
potential to generate design and context sensitive occupant-related data. However, extended observations
(longitudinal data covering relevant spatial and temporal events) which are necessary for developing quanti-
tative predictive models are impractical using conventional IVEs. To that end, the authors propose a Spatial-
Temporal Event-Driven (STED) modeling approach to enable IVEs for longitudinal studies. Using a single oc-
cupant office as case study, two sets of occupancy and lighting data, from IVEs and a comparable physical
environment (in-situ), were collected. The occupancy/lighting data was organized in form of state transitions at
six events (i.e., arrival in the morning, leaving for and returning from a short leave, leaving for and returning
from a long leave, and leaving at the end of a day). It was hypothesized that the probabilities of the occupancy/
lighting state transitions in a given event across the two experimental environments (i.e. IVE vs. in-situ) are not
statistically different. Results revealed similar patterns at four of the six events (α=0.05), except at the short
leave events. Thereby, STED modeling enabled the potential viability of IVEs for extended observations and
generating data to support predictive models. Clearly, more basic research is needed to make data collection
using IVEs more effective including a better understanding of virtual cue design and participant's physiological
and psychological conditions at the time of experiments.

1. Background

Recent studies suggest that occupant behavior has a significant
impact on building energy consumption [1] and has caused high per-
formance buildings to fail in meeting their design expectations [2].
Meanwhile, work productivity, human health, and building energy ef-
ficiency are intertwined and heavily dependent on occupant comfort
(e.g., [3,4]). Thus, a better understanding of human and building in-
teractions in different settings is critical to building design and opera-
tions. Currently, mainstream studies on occupant behaviors have been
mainly conducted in-situ using actual buildings [5]. While such studies
are important to the operations of existing buildings, results of those
studies are often difficult to generalize and apply to other buildings or
new designs [6]. This is one of the reasons that after decades of building
performance research, performance gaps still exist [7]. In buildings
where automated systems are used occupants' interactions with such

automated systems (e.g. technology–user interactions, program design,
and data analysis) are critical for the successful implementation of full
automated systems [8,9]. Therefore, human-building interactions are a
topic that will not be exempted from future research. Let alone to say
that passive building designs are also gaining popularity [10,11].

The authors suggest a new approach, the application of immersive
virtual environments (IVEs) for generating and examining occupant-
related data during the preconstruction phases of a building project.
IVE's are rich multisensory computer simulations that can afford the
feeling of being mentally immersed or present in the simulations,
i.e.,—a virtual world [12].The level of immersion in Virtual Reality
(VR) is dependent upon the graphic frame rate, overall extent of
tracking, tracking latency, quality of the images, the field of view, the
visual quality of the rendered scene, dynamics, and the range of the
sensory modalities accommodated [13,14]. VR experiences can be
classified into 1) fully immersive or first-order immersive systems that
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have a lot in common with our everyday experiences (e.g. head-
mounted displays). Lower order VR systems are 2) semi-immersive (e.g.
projection-based displays), and 3) non-immersive (e.g. desktop stereo-
scopic displays) complied with fewer immersion capabilities, however,
they still offer some levels of presence [15,16]. The advantage of using
IVEs for data collection is its ability to retain the control of an experi-
mental environment, and its flexibility in designing experimental con-
texts. “IVE's attraction lies in the tendency for individuals to react in
virtual reality as they would in the real-life situation.” [17]. They have
been effectively utilized to testing situations that are too risky to be
examined in reality, such as emergency evacuation in tunnels [18] [19]
or hotels [20]. Furthermore, IVE applications have made an ex-
ceptionally useful contribution to cases with non-existing testing plat-
form or experiences that cannot be easily replicated in in-situ; for in-
stance, building design review and analysis [21,22], the review of full
scale physical mock-ups of hospital patient rooms [23,24], and archi-
tectural design [25–27]. Above all, IVE applications to occupant en-
ergy–use behavior studies are emerging [27] [28–33]. These studies
have demonstrated the outstanding capabilities of IVEs to model: 1)
building components such as rooms, spaces, windows, lights, or blinds,
as well as their properties such as space layout and luminance levels; 2)
states of a building component such as blinds close or open and lights
on or off; 3) indoor environments specific to the purpose of a study,
such as addressing visual, acoustic, and thermal comfort factors; and 4)
interactions with building components such as operations of lights or
blinds.

Although these capabilities are critical to modeling occupant energy
behaviors, IVEs have not been used to develop quantitative predictive
models yet. Typically, creating such models requires sufficient in-
formation about the variable of interest to enable establishing and ex-
amining the patterns in the data [34], which can only be achieved
through extended observations (longitudinal data) or repeated mea-
sures. While acquiring longitudinal data is not a problem in in-situ
studies or using surveys, it represents a significant challenge to IVE
applications. In an IVE experiment, researchers typically cannot con-
tinuously put participants in IVEs for> 20 to 30min or request the
same participant to participate in many experiments. Thus, collecting
longitudinal data using conventional IVE designs is impractical. To
better address this limitation of IVEs, the authors propose a Spatial-
Temporal Event-Driven (STED) modeling approach, which selects and
models a series of critical events and thus condenses a long period of
observations such as days or seasons into a considerably shorter time
such as a couple of hours. In other words, continuous observations are
broken down into numerous measurable experimental units, which
represent benchmarks subjected to the planned interventions of an
experiment. If successful, this approach will enable longitudinal data
collection in IVEs, which is critical to support a larger range of appli-
cations including predictive modeling than existing applications of IVEs
in building design.

2. The spatial-temporal event-driven (STED) model

2.1. Conceptual framework

Longitudinal studies supposedly contain a balanced coverage of
observations based on the needs of research. Using a conceptual fra-
mework, this study was able to design a systematic method to generate
sufficient data that will be useful for ensuring IVEs in extended ob-
servations. To begin with, the authors adopted four basic elements re-
lated to occupants and building energy performance, to describe the
conceptual framework of a STED model, i.e., “State”, “Context”, “Event”,
and “Human (H)-Building(B) Interaction.” In this study, State (si, si+1, …,
si+n) is defined as the collective status of operations in different
building spaces at a certain point of time, especially the conditions of
building systems and components that are operable by human beings
and have energy efficiency consequences. An example of the state of a

building can be the light-use condition of an entire building at 8:00 am
on a normal working day. Contexts are situational factors that are as-
sociated with and describe the state of a building, but not necessarily a
part of it. For example, a contextual factor can be the season for de-
scribing the light-use state of a building at 8:00 am, because the day-
light condition in the winter can be significantly different from the
summer at the same time point. Event (e1, e2, …, ek) is an occurrence
that triggers the change of a state or sets the foundation for future
events to change a state. Thus, there are state changing events and non-
state changing events. Finally, HeB Interaction refers to a particular
type of occupant actions to mitigate a thermal, visual, indoor air
quality, or acoustic discomfort of an occupant such as turning on arti-
ficial lighting at 8:00 am by an occupant, which is associated with a
state change event.

At a higher level, states and events are interconnected, forming a
constant loop between them (see Fig. 1). State i is the initial status of a
given set of spaces at a specific time point along the time span of a
study. State i will change to state i+ 1 upon the occurrence of an event.
This structure allows researchers to connect space conditions and time,
which is critical to designing experiments for longitudinal data collec-
tion in built environments.

Fig. 2 displays a more extensive model of the state-event diagram
that incorporate “occupant need”, and “HeB interaction” into the state-
event model. Occupant needs are defined as human motivation under
the context preceding the occurrence of an event, and consequently
trigger HeB interactions. In fact, the occurrence of an event can impact
occupant's overall comfort and generate a desire for HeB interactions,
which leads a state change. Thus, a state transition, the change in the
collective status of a building and its component will take place.
Window-opening, shade control, lighting control, thermostat control,
electric equipment usage, and space occupancy status are among the
most common HeB interactions people perform to maintain or pursue
their general comfort indoors.

2.2. Theoretical framework

Since state transitions are a key parameter to measure the impact of
occupant behavior, this study uses a transition matrix to estimate all
possible transitions from one state (si) to the following state (si+1).
According to Fig. 2, the connection between two consecutive states is
tightly related to possible events (ek) in between. Consequently, the
likelihood of state transitions is essential dependent on paired transi-
tions, i.e., from si to ek and then from ek to si+1. Therefore, two condi-
tional probabilities are used to describe a state transition from si to si+1,
the probability of the occurrence of an event given an initial state, p
(ek|si), and the probability of an event leading to a succeeding state, p
(si+1|ek). Hence, the probability of the occurrence of a state (si+1) given
a certain initial state (si) is estimated by two conditional probabilities, p
(ek|si) and p(si+1|ek), which is calculated by p(si+1|si)= p(ek|si) ∗ p
(si+1|ek).

The probability, p(ek|si), is calculated as follows. The number of
occurrence of event k (nek) at state i (si), is expressed as neksi and used to
construct a probability matrix M. For instance, the number of event 2 at
the occurrence of state 0 is ne2s0.

Fig. 1. State-event model.
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