
Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

An algorithmic design grammar for problem solving

Dan Houa,b, Rudi Stouffsa,⁎

a School of Design & Environment, National University of Singapore, 117566 Singapore, Singapore
b School of Architecture, Tianjin University, 300181 Tianjin, China

A R T I C L E I N F O

Keywords:
Shape grammar
Description grammar
Algorithmic structure
Layout generation problem (LGP)
Local reasoning

A B S T R A C T

Shape grammars, in conjunction with description grammars, have potential for applications beyond stylistic
design generation, such as problem solving. However, few case studies elucidate how to map design logic or
knowledge onto the development and organization of rules. As such, the application process usually remains
manual or controlled by an optimization algorithm. The aim of this study is to create a design grammar which
can rely on logic embedded within or between rules to guide the derivation process towards an objective in an
automated way. We propose a general approach to develop an algorithmic design grammar which allows logic to
be embedded at varying complexity level. To improve the clarity of logic and automate the application of
grammars, rules are structured in algorithmic patterns using sequence, selection and iteration. A layout gen-
eration problem is used as a case study for demonstration, and design grammars with different deduction
strategies are compared regarding their applicability and limitations.

1. Introduction

Undoubtedly, computational techniques significantly enhance the
efficiency, precision and creativity of design problem solving. These
systematic methods show obvious superiority in dealing with complex
problems, but the innate features of design, like multi-disciplinarity [1],
open-endedness [2] and ill-structuredness [3], still pose great chal-
lenges for them.

Representation is one of the important topics in Simon's design
curriculum [3], and it is always placed in the first phase of the design
synthesis process, as the basis for the sequential generation, evaluation
and guidance [4]. From the perspective of problem-solving, a good
representation is a way of facilitating a problem formulation so that we
can gain access to the acceptable solutions efficiently [2, 5]. It plays an
important role in clarifying the design requirements and constraints,
identifying the variation elements, determining the appropriate search
and generation techniques, etc. Therefore, a representation has a great
influence on the overall performance of a design synthesis system [6].

Generally, design representations could be classified into two types:
the representation of an artifact being designed, and the representation
of a process to achieve the design goals [2]. We denote these types as
model-based and rule-based, respectively.

Adopting a model-based representation, the synthesis of a solution
then, actually, means the assembly of values for every variant, so in a
sense, it can be simply considered as an assignment problem. By

contrast, when embracing a rule-based representation, a design solution
gradually completes via the recursive application of rules. As such, a
rule-based representation is not able to depict the explicit boundaries of
the solution space since it is difficult to exhaustively predict the way the
rules will apply corresponding to the changing context. However, a
rule-based approach to problem solving is particularly beneficial when
the application logic is dynamic (i.e., where a change in policy needs to
be immediately reflected throughout the application) and rules are
imposed on the system by external entities [7].

In fact, the main difference between both approaches to design
synthesis lies in whether the state of the initial inputs is the same as that
of the final outputs. Here the meaning of state is similar to the one used
by Woodbury [8], referring to the abstract or concrete configuration.
For a model-based approach, designers are supposed to provide the
final state of solutions. Searching in this case is to eliminate those in-
valid solutions within that state space by judging if they violate the
constraints. Compared to such a passive way, a rule-based approach
actively traverses the paths to the valid solutions. These paths indicate
the change of states, which are in fact implied in the rules or inferred by
the rules. The accessibility to that incomprehensible state space via the
partial and intentional representation in the rules [8] is the most dis-
tinctive function of a rule-based approach.

In this paper, we choose a rule-based approach, formalized as a
design grammar, to solve a complex layout generation problem (LGP).
For a grammatical approach, such as shape grammars, even when we

https://doi.org/10.1016/j.autcon.2018.07.013
Received 2 February 2018; Received in revised form 22 June 2018; Accepted 16 July 2018

⁎ Corresponding author.
E-mail addresses: houdan@tju.edu.cn (D. Hou), stouffs@nus.edu.sg (R. Stouffs).

Automation in Construction 94 (2018) 417–437

Available online 01 August 2018
0926-5805/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2018.07.013
https://doi.org/10.1016/j.autcon.2018.07.013
mailto:houdan@tju.edu.cn
mailto:stouffs@nus.edu.sg
https://doi.org/10.1016/j.autcon.2018.07.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2018.07.013&domain=pdf


ignore the coding problem, the development of the grammar is still a
difficult task because designers need to decompose some global inten-
tions like problem requirements and generation mechanism into in-
formation fragments and map them onto the rules or the relations be-
tween them. To address this problem, some studies adopted a
compromise strategy that combines simple production rules with extra
algorithms as global or local control [9]. But in fact, this way is limited
in alleviating the burden of the grammar developer, while it makes part
of the generation logic opaque to other users of this grammar. Further,
the IF-THEN structure of rules determines that they inherently have
inference ability [6]. Encoding a certain degree of automated reasoning
to rationalize solutions is one critical advantage of using grammars
[10], though it is not as easy to organize as the production ability in
grammars. The key lies in how to convert design logic to machine
readable and operable patterns.

Therefore, this study aims to develop an algorithmic design
grammar by creating and organizing rules in the common structural
ways of sequence, selection and iteration. In this way, the exploration
for a valid solution fully depends on the design grammar with the al-
gorithm expressed within the design grammar. In addition, rather than
only taking the design grammar as a production system, this paper
emphasizes its use for problem-solving in a deductive way. Benefiting
from the modular organization of rules, several design grammars are
adapted from the basic design grammar, to encode more advanced
deductive strategies. The comparison between them illustrates the po-
tential and limitations of an algorithmic design grammar in problem
solving. LGP is a good case for testing the proposed approach since the
complex and intertwined conditions in the problem specification need
some algorithmic structures and deduction logic.

2. Antecedents

2.1. Shape grammar for designing

Shape grammars were introduced by Stiny and Gips in 1972 as a
production system that computes with shapes and symbols [11]. There
are a few well-known strengths of shape grammars for design, such as
versatility (representation of any shapes), intuition (ease of observa-
tion), automation, guarantee of style consistency, ability to generate
emergent shapes, and so forth [9, 12]. Many works highlight their
generational power for both analytical (to capture and imitate a certain
architectural style, e.g. the Palladian grammar [13]) and synthesis (to
create new designs, e.g. the kindergarten grammar [12]) purposes.
Compared with analytical grammars, design (synthesis) grammars are
much more meaningful for design practice as design synthesis is an
inevitable step to obtain a new design.

In terms of the grammar development process, the development of
an analytical grammar and a design grammar, both require the same
five steps [12]: specifying the vocabulary, spatial relations, shape rules,
initial shape(s), and shape grammar. While these may be relatively
straightforward for the development of an analytical grammar, as the
target designs are predefined, they are much more complex for a design
grammar, since for a developer it is difficult to exactly predict what
elements a desired design should have before he or she finishes a de-
sign. The inherent unpredictability of design leads to a complex inter-
action between the design process and the development of the sup-
porting design grammar. This is one important reason why design
grammars are still far from practical.

Ruiz-Montiel et al. [9] consider two types of shape grammars: ex-
pert grammars which hard-code expert domain knowledge in rules, and
naïve grammars without any guides for rule selection. Rather than
adopting such a control mechanism point of view, we prefer to classify
design grammars from the perspective of the generation logics into
object-oriented and goal-oriented. The former aim to map solutions
onto the assembly of feasible design components, while the latter focus
on the design exploration driven by specific evaluation criteria. Note

that these terms are used here a little different than in computer sci-
ence.

In the object-oriented type, in order to construct feasible solutions,
developers need to extract the characteristics of desired designs and
allocate them to the rules in a certain logic. Obviously, most expert
grammars belong to this kind. There are mainly three requirements for
object representation: feasibility, diversity and efficiency. Generally,
feasibility is achieved by semantic information and constraints. For
example, in his design grammars for urban planning, Beirão [14] built
ontologies to organize the semantics of design objects and combined
constraint descriptions with shape rules to guarantee that designs
comply with specifications. Elsewhere, labels have been added to fa-
cilitate valid designs, e.g., indicating functions [15] or indicating design
states [16]. For diversity, three evident aspects are involved: shapes,
parameters and spatial relations. In the digital camera grammar, Lee
[17] extended the pool of rules by using Boolean operations to create
new shapes and adjusting the spatial relations between shapes. Finally,
most studies do not reflect much on efficiency since it is difficult for
developers to assess a representation before the application of the
grammar. A reasonable way is to optimize the representation after
analyzing the results of a grammar (e.g., [18]). It is not hard to see that
object-oriented grammars attempt to clarify as many things as possible,
no matter for the design space or the search path. Thus, designers are
able to easily understand how a grammar works and predict its pro-
ducts, although it imposes restrictions [19].

In the goal-oriented type, rather than predicting the likely char-
acteristics of a desired design, developers obtain some definite in-
formation about them, that is, goals. Evaluation is embedded to give
feedback about how far off the current design is from the goals and then
to guide rule selection. Essentially, the goal-oriented approach attempts
to narrow the solution space down to those areas of interest [20].
Generally, there are two kinds of mechanism to achieve this:

• Global search is the most common one and evaluates complete de-
signs. It often combines grammars with external control algorithms.
For example, Gero et al. [21] applied a genetic algorithm to vary the
rule sequence to generate satisfactory solutions. Shea [22] in-
tegrated a simulated annealing algorithm and a shape grammar to
explore the layout of discrete structures, such as planar trusses and
space trusses. Ruiz-Montiel et al. [9] made use of a reinforcement
learning technique to select rules and generate a large variety of 2D
house layout schemes complying with design requirements. In ad-
dition to changing rule selection or sequence, Gero et al. [23] also
used genetic engineering to evolve shape rules to construct solutions
in a more efficient way. The grammars in most of these studies are
naïve grammars so that more freedom and creativity is allowed in
the rule sequence. However, it does not mean goal-oriented ap-
proaches are not appropriate for expert grammars. Lee [17] applied
genetic programming and genetic algorithms to the expert grammar
for digital camera design. The key point is to guarantee the selection
of rules in a rigorous grammatical sequence.

• Local reasoning requires the design grammar to act not only as a
production system, but also as an interaction system. This means a
rule needs to recognize the gap between the evolving design and the
desired design during its application, and respond to bridge that
gap. To achieve this goal, developers have to code control principles
in the rules. However, as local reasoning often needs some addi-
tional non-geometric information, most work still adopts external
algorithms or calculation formulas to control rule selection. The
discursive grammar by Duarte [24] is a typical example, although it
is in principle an analytical grammar. Heuristics determine if a rule
can be applied based on the predicted result. Another example is the
minaret design grammar by Al-kazzaz [16], in which the rule and
the grammar are assessed in real-time by evaluation criteria so that
the user can choose rule applications accordingly. Agarwal [15]
considers a similar evaluation system in his coffee maker grammar.

D. Hou, R. Stouffs Automation in Construction 94 (2018) 417–437

418



Download English Version:

https://daneshyari.com/en/article/6695366

Download Persian Version:

https://daneshyari.com/article/6695366

Daneshyari.com

https://daneshyari.com/en/article/6695366
https://daneshyari.com/article/6695366
https://daneshyari.com

