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A B S T R A C T

Load prediction of tunnel boring machines (TBMs) is crucial for the design and safe operation of these complex
engineering systems. However, to date, studies have mostly used only geological data, but the operation of TBMs
also has an important effect on the load, especially its dynamic behavior. With the development of measurement
techniques, large amounts of operation data are obtained during tunnel excavation. Mining these heterogeneous
in-situ data, including geological data and operation data, is expected to improve the prediction accuracy and to
realize dynamic predictions of the load. In this paper, a dynamic load prediction approach is proposed based on
heterogeneous in-situ data and a data-driven technique. In this approach, the integration of heterogeneous in-
situ data is conducted as follows: i) the geological data are extended to match the scale of the operation data
using an interpolation method; ii) the categorical data and numerical data are fused through a proposed en-
coding method; and iii) the geological data are combined with the operation data according to the location of
each operation datum. A data-driven technique, Random forest, is used to construct the prediction model based
on the integrated heterogeneous in-situ data. The approach is applied to a collection of heterogeneous in-situ
TBM data from a tunnel in China, and the results indicate that the approach can not only accurately predict the
dynamic behaviour of the load but can also precisely estimate the statistical characteristics of the load. This work
also highlights the applicability and potential of data-driven techniques in the design and analysis of other
complex engineering systems similar to TBMs.

1. Introduction

Tunnel boring machines have been widely used for the tunnel ex-
cavation because of their relatively higher efficiency, safety and en-
vironmental friendliness compared to conventional blasting excavation.
To ensure the proper design of TBMs and the safe operation of these
systems during excavation, accurately predicting the load (generally
referring to the thrust and torque of the cutterhead) is essential [1]. In
recent decades, researchers have focused on using geological data to
predict the load, and a number of load prediction methods have been
proposed. These methods can be typically categorized into three
classes: empirical methods, rock-soil mechanics methods, and numer-
ical simulation methods. Krause [2] proposed an empirical model for
TBM load prediction, and this model is widely used for load prediction
in the design of TBMs [4–6]. Mikaeil [7] proposed different empirical
equations for different types of rocks respectively and developed a fuzzy
rock classification system. Yagiz [8] reviewed the studies of empirical
methods and utilized a polynomial exponential regression to predict the
load and performance of TBMs. In recent years, some researchers

integrated empirical methods with scaled cutting experiments to im-
prove the prediction accuracy. Gertsch [9] compared the effects of
different geological parameters on the load using a rock failure ex-
periment. Xue [10] analyzed the stress in the rock failure process
caused by a cutter in a cutting experiment. Entacher [11] improved the
cutting experiment and developed an empirical method to estimate the
load based on the cutting results. In terms of rock-soil mechanics
methods, Shi [12] and Wang [13] used rock-soil mechanics to calculate
the load with the assumption that only one stratum is present in the
excavation face. Zhang [14] advanced their work in order to take
multiple strata into consideration. In terms of numerical simulation
methods, Kasper [15] analyzed the stress distribution in the excavation
face through a three-dimensional numerical simulation. Su [16] applied
regression analysis to analyze the torque based on a numerical simu-
lation of the cutting process. The above-mentioned methods provide
insights into TBM load predictions and benefit the design and analysis
of TBMs. However, as geological data are static data, these methods can
be used to determine only certain aspects of the load, such as the mean
and range, which are too coarse for the design and analysis of TBMs.
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Past studies of TBMs have shown that the approximate range of the load
is mainly determined by the geological conditions [2,4–18], but the
dynamic behavior of the load is largely determined by the operation of
the TBM [1,19]. Using both geological data and operation data syn-
chronously is expected to not only improve the prediction accuracy but
also realize dynamic load predictions. However, to the best of our
knowledge, no such studies have yet been reported.

With the advancement and development of cyber-physical systems
and measurement techniques, massive amounts of operation data on
complex engineering systems, such as aircraft, chemical process sys-
tems, nuclear systems and wind power systems, are obtained during the
engineering process, providing many opportunities for the practical
application of data-driven techniques to aid in the design and analysis
of these complex engineering systems [20–22]. Biyington used an ar-
tificial neural network (ANN) to predict the remaining life of key
components in an aircraft based on in-situ data [23]. Yin used several
data-driven techniques for chemical process monitoring and fault di-
agnosis (PM-FD) and provided some references to achieve successful
PM-FD for large-scale industrial processes [24]. Zio used fuzzy simi-
larity analysis to predict the failure scenarios and remaining useful life
based on historical data from a nuclear system [25,26]. Zhang used
support vector regression (SVR) to analyze the effects of ambient and
wake turbulence on the power generation of wind turbines based on
wind velocity and power data [27]. Data-driven techniques have been
successfully used in construction as well. Kusiak used an ANN to predict
the steam load in a new building based on historical data from other
buildings [28]. Adoko used adaptive neuro-fuzzy inference systems to
predict the rock burst intensity based on field measurement data [29].
Shirmohammadi applied adaptive neuro-fuzzy inference systems to
predict the groundwater level based on historical geological data [30].
In recent years, TBMs have been widely used in numerous tunnel ex-
cavations, and considerable operation data have been recorded. Such
heterogeneous in-situ data, including operation data and geological
data, should be useful in predicting the dynamic load of the TBM.
However, the heterogeneous in-situ data have two special character-
istics that limit the application of data-driven techniques on them. The
first is that the sizes of the geological data and the operation data are
different, and the other is that the heterogeneous in-situ data include
not only numerical data but also categorical data, which cannot be used
directly in load predictions. Therefore, new methods need to be de-
signed to efficiently integrate the heterogeneous in-situ data in order to
predict the dynamic load of a TBM via a data-driven technique.

In this paper, a dynamic load prediction approach is proposed based
on the heterogeneous in-situ data using a data-driven technique, and a
collection of in-situ TBM data from a tunnel in China is used to validate
the proposed approach. The remainder of this paper is organized as
follows. Section 2 introduces the engineering project where the het-
erogeneous in-situ data come from. Section 3 presents the details of the
proposed approach, including the integration of the heterogeneous in-
situ data and the selected data-driven technique. The prediction results
and discussion are provided in Section 4. The final section details the
conclusions of this paper.

2. Project review

The tunnel studied in this paper is located in a metro line in China
and has a length of 2000m and a diameter of 6.4m. A schematic il-
lustration of the tunnel is provided in Fig. 1. The ground surface ele-
vation ranges from 0.2 to 5.8 m, and the depth of the tunnel floor from
the ground surface ranges from 11.8 to 25.4m. From the ground surface
to the tunnel floor, various geological layers, such as clay, sand and
rock, are unevenly distributed. Some of the geological characteristics of
these layers are described in Appendix A. To excavate the tunnel, an
earth pressure balance (EPB) shield TBM was used. This system consists

of a cutterhead, chamber, screw conveyor, tail skin and other auxiliary
subsystems. The TBM has a diameter of 6.2 m and a total mass of over
500,000 kg, and the cutterhead features an opening percentage of 30%
and 120 cutters.

3. Dynamic load prediction approach

A flow chart of the proposed dynamic load prediction approach is
shown in Fig. 2. The details of each part are presented below.

3.1. Data description

The heterogeneous in-situ data used here include the operation data
from the TBM measurement system and the geological data from the
geological investigation report. The operation data are composed of 53
attributes (for details, see Appendix B) that were continuously mea-
sured with a frequency of 1 Hz along the entire length of the tunnel. The
geological data were obtained from 98 sampling locations along the
tunnel and include the layer classification (categorical data, shown in
Appendix A), the geological spatial distribution (numerical data, shown
in Fig. 1) and the mechanical parameters of each geological layer
(numerical data, shown in Appendix A). To efficiently integrate the
heterogeneous in-situ data, the geological data and operation data are
processed as follows.

3.2. Data integration

3.2.1. Geological data processing
The geological data represent the geological information on the

sampling locations, but the operation data represent the operational
information along the length of the entire tunnel. For correlation with
the operation data, the geological data need to be extended, and an
interpolation method, kriging method (KRG), is used to estimate the
geological conditions between the sampling locations. The details of the
geological data extension are as follows [31]. By combining a global
model and a localized departure, the KRG function can be formulated as
follows:
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where x is the elevation of the boundary between adjacent layers at the
sampling locations, as shown in Fig. 3; y(x) is the elevation of the
boundary in an unsampled location; fj(x) is a known approximation
function, and βj is its coefficient; and z(x) represents a stochastic
Gaussian process described by the following equations.
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where σ2 is the variance; R(θ,xi,xj) is the correlation function between
xi and xj; and θ is the correlation parameter. Given m sampling locations
and letting (f(x)= (f1(x), f2(x), …, fp(x))T, β=(β1, β2, …, βp)T, Z=(z1,
z2, …, zp)T and F=(f(x1), f(x2),…, f(xm))T, the elevation of the un-
sampled location Y can be reformulated as follows:

= +Y Fβ Z (4)

Based on the linear regression model , c(x)∈ℝm, and the prediction
error is

̂ − = −x y x c x Z z xy ( ) ( ) ( ) ( )T (5)

The corresponding mean square error φ(x) is as follows:

= + −φ x σ c x Rc x c x r( ) (1 ( ) ( ) 2 ( ) )T T
x

2 (6)

where rx is the correlation function between unsampled location x and
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